
A Parallel Spatial Co-location Mining Algorithm Based on MapReduce

Jin Soung Yoo∗, Douglas Boulware† and David Kimmey‡
∗‡Department of Computer Science

Indiana University-Purdue University Fort Wayne, Indiana 46805
Email: yooj,kimmdl01@ipfw.edu

†Air Force Research Laboratory
Rome Research Site, Rome, New York 13441
Email: douglas.boulware@us.af.mil

Abstract—Spatial association rule mining is a useful tool for dis-
covering correlations and interesting relationships among spatial
objects. Co-locations, or sets of spatial events which are frequently
observed together in close proximity, are particularly useful
for discovering their spatial dependencies. Although a number
of spatial co-location mining algorithms have been developed,
the computation of co-location pattern discovery remains pro-
hibitively expensive with large data size and dense neighborhoods.
We propose to leverage the power of parallel processing, in
particular, the MapReduce framework to achieve higher spatial
mining processing efficiency. MapReduce-like systems have been
proven to be an efficient framework for large-scale data process-
ing on clusters of commodity machines, and for big data analysis
for many applications. The proposed parallel co-location mining
algorithm was developed on MapReduce. The experimental result
of the developed algorithm shows scalability in computational
performance.

Keywords–spatial data mining; co-location pattern; spatial as-
sociation analysis; cloud computing; MapReduce

I. INTRODUCTION

So-called “Big data” is a fact of today’s world and brings
not only large amounts of data but also various data types that
previously would not have been considered together. Richer
data with geolocation information and date and time stamps
is collected from numerous sources including mobile phones,
personal digital assistants, social media, vehicles with naviga-
tion, GPS tracking systems, wireless sensors, and outbreaks
of disease, disaster and crime. The spatial and spatiotemporal
data are considered nuggets of valuable information [1].

Spatial data mining is the process of discovering interesting
and previously unknown, but potentially useful patterns from
large spatial data and spatiotemporal data [2]. As one of
spatial data mining tasks, spatial association mining has been
widely studied for discovering certain association relationships
among a set of spatial attributes and possibly some non-
spatial attributes [3]. Spatial co-location represents a set of
events (or features) which are frequently observed together in
a nearby area [4]. Although many spatial association mining
techniques [4]–[12] have been developed, the computation
involved in searching spatially associated objects from large
data is inherently too demanding of both processing time
and memory requirements. Furthermore, explosive growth in
the spatial and spatiotemporal data emphasizes the need for
developing new and computationally efficient methods tailored
for analyzing big data. As a solution, parallel/distributed data
processing techniques are becoming a necessity to deal with
the massive amounts of data. We propose to leverage the power

of parallel processing to achieve higher spatial data mining
processing efficiency.

Modern frameworks facilitating the distributed execution of
massive tasks are becoming increasingly popular since the in-
troduction of MapReduce programming model, and Hadoop’s
run-time environment and distributed file systems [13]. For
large-scale data processing on clusters of commodity ma-
chines, MapReduce-like systems have been proven to be an
efficient framework for big data analysis for many applications,
e.g., machine learning [14] and graph processing [15]. In
this paper, we present a MapReduce-based co-location mining
algorithm.

Applying the MapReduce framework to spatial co-location
mining presents several challenges. Because of limited com-
munication among nodes in a cluster, all steps of co-location
mining should be paralleled inter-dependently. However, for
the parallel processing, it is non-trivial to divide the search
space of co-location instances, i.e., a set of spatial objects
which have neighbor relationships with each other. Explicit
search space partitioning may lose co-location instances across
different partitions and generate incomplete and incorrect
mining results. When a client submits a job task, MapReduce
automatically partitions the input data into physical blocks and
distributes the blocks to the distributed file systems. However,
this explicit data partition and distribution may lose some
spatial relationships among objects because spatial objects are
embedded on continuous space, and make various relationships
with each other. Moreover, assigning balanced loads among
nodes is a difficult problem. In this paper, we address these
problems and propose a parallel/distributed algorithm for spa-
tial co-location mining on MapReduce.

The remainder of this paper is organized as follows. Section
II presents the basic concept of spatial co-location mining and
the MapReduce paradigm, and describes the related work. Sec-
tion III shows our search space partition strategy and Section
IV presents the proposed MapReduce based co-location mining
algorithm. Experimental results are reported in Section V and
the paper will conclude in Section VI.

II. PRELIMINARIES

This section presents the basic concept of spatial co-
location mining and the MapReduce programming model, and
describes the related work.

A. Spatial Co-location Mining
Boolean spatial events (features) describe the presence of

spatial events at different locations in geographic space. Exam-

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.14

25

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.14

25

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.14

25

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.14

25

prevalence
measures

If PI > min prevalence threshold,
{A, B, C} is a co−location pattern

Participation Ratio (PR)s

=min(PR, PR, PR)
=min(2/3, 2/5, 2/3)=2/5

Participation Index (PI)
co−location
instances

2/52/3

3/32/5

2/34/5

3/53/4

A B C

A.2 B.4 C.2

A.3 B.3 C.1

B.4 C.2

B.3 C.1

2/3

B C

B.3 C.3

A C

A.3 C.1

A.4 C.1

A.1 C.1

A.2 C.2

A.3 B.3

A.1 B.1

A B

A.2 B.4

Computation of prevalence measures

C.3
B.1

C.1

B.5
B.2

C.2
B.4

A.2

A.4 A.3

B.3 A.1

E.i : instance i of event type E

Figure 1. Spatial co-location mining

ples of such data include disease outbreaks, crime incidents,
traffic accidents, mobile service types, climate events, plants
and species in ecology, and so on. Let E = {e1, . . . , em}
be a set of different spatial events. A spatial data set S =
S1∪ . . .∪Sm, where Si(1 ≤ i ≤ m) is a set of spatial objects
of event ei, where an object o ∈ Si can be represented with
a data record <event type ei, instance id j, location x, y >,
where 1 ≤ j ≤ |Si|. Figure 1 shows an example where each
data object is represented by its event type and unique instance
id, e.g., A.1.

Spatial neighbor relationship R can be defined with metric
relationship (e.g., Euclidean distance), topology relationship
(e.g., within, nearest), and direction relationship (e.g, North,
South). This work uses a distance-based neighbor relationship.
Two spatial objects, oi ∈ S and oj ∈ S, are neighbors if the
distance between them is not greater than a given distance
threshold d; that is, R(oi, oj) ⇔ distance(oi, oj) ≤ d. In
Figure 1, identified neighbor objects are connected by a solid
line.

A co-location C = {e1, . . . , ek} is a subset of spatial events
C ⊆ E whose instance objects are frequently observed in a
nearby area. A co-location instance I ⊆ S of a co-location
C is defined as a set of objects which includes all event types
in C and forms a clique under the neighbor relationship R. In
Figure 1, {A.2, B.4, C.2} is a co-location instance of {A, B,
C}. The prevalence strength of co-locations is often measured
by participation index [4].

Definition 1: The participation index PI(C) of a co-
location C = {e1, . . . , ek} is defined as PI(C) =
minei∈C{PR(C, ei)}, where 1 ≤ i ≤ k, and PR(C, ei)
is the participation ratio of event type ei in the co-
location C that is the fraction of objects of event ei in
the neighborhood of instances of co-location C − {ei}, i.e.,
PR(C, ei) = Number of distinct objects of ei in instances of C

Number of objects of ei

.

The prevalence measure indicates wherever an event in C
is observed, with a probability of at least PI(C), all other
events in C can be observed in its neighborhood. If the
participation index of an event set is greater than a user-
specified minimum prevalence threshold min prev, the event
set is called a co-location or co-located event set. In the
example of Figure 1, the participation index of an event set
C = {A, B, C} is PI(C)=min{PR(C, A), PR(C, B), PR(C,
C)} = min{ 2

3
, 2

5
, 2

3
}= 2

5
.

������
������
������
������

������
������
������

��	

	��

	��

���� ������
���� ������ ���� ������

������
������

���� ������
������

����
���� ������
���� ������

���� ������
���� ������

���� ������

������

������
������

������

������

��	�
���
�
��
	�
���
�

�����
 ���
�����	

��	������
!�

��

����
�
��	��

 ����
�
��	��

"���# �����$
"���# �����$

"���#�%�����&$ "���# �����$

'�����

'����� '�����

+�77���������

��	

������
������

������

������

'�����

'�����

Figure 2. MapReduce Program and Execution Models

B. MapReduce

MapReduce [16] is a programming model for expressing
distributed computations on massive amounts of data and an
execution framework for large-scale data processing on clusters
of commodity servers. MapReduce simplifies parallel process-
ing by abstracting away the complexities involved in working
with distributed systems, such as computational parallelization,
work distribution, and dealing with unreliable hardware and
software.

The MapReduce model abstraction is presented in Fig-
ure 2. A MapReduce job is executed in two main phases of
user defined data transformation functions, namely, map and
reduce. When a job is launched, the input data is split into
physical blocks and distributed among nodes in the cluster.
Such division and distribution of data is called sharding, and
each part is called a shard. Each block in the shard is viewed
as a list of key−value pairs. In the first phase, the key−value
pairs are processed by a mapper, and are provided individually
to the map function. The output of the map function is another
set of intermediate key − value pairs.

The values across all nodes, that are associated with the
same key, are grouped together and provided as input to the
reduce function in the second phase. The intermediate process
of moving the key − value pairs from the map tasks to
the assigned reduce tasks is called a shuffle phase. At the
completion of the shuffle, all values associated with the same
key are located at a single reducer, and processed according
to the reduce function. Each reducer generates a third set of
key − value pairs considered as the output of the job.

MapReduce can also refer to the execution framework that
coordinates the execution of programs written in this particular
style. MapReduce decomposes a job submitted by a client into
small parallelized workers. A significant feature of MapReduce
is its built-in fault tolerance. When a failure at a particular
map or reduce task is detected, the keys assigned to that
task are reassigned to an available node in the cluster and
the crashed task is re-executed without the re-execution of the
other tasks. MapReduce was originally developed by Google
and has since enjoyed widespread adoption via an open-source
implementation called Hadoop [13]. Currently, MapReduce is
considered the actual solution for many data analytics’ tasks
over large distributed clusters [17], [18].

26262626

C. Related Work

Since Koperski et al. [3] introduced the problem of mining
association rules based on spatial relationships (e.g., proximity,
adjacency), spatial association mining has been popularly
studied in data mining literature [4]–[7], [9], [12], [19], [20].
Shekhar et al. [4] defines the spatial co-location pattern and
proposes a join-based co-location mining algorithm. The in-
stance join operation for generating co-location instances is
similar to apriori gen [21]. Morimoto [5] studies the same
problem to discover frequent neighboring service class sets
but a space partitioning and non-overlap grouping scheme is
used for finding neighboring objects. Xiao et al. [7] proposes
a density based approach for identifying clique neighbor in-
stances. Eick et al. [6] works on the problem of finding regional
co-location patterns for sets of continuous variables in spatial
data sets. Mohan et al. [20] proposes a graph based approach
to regional co-location pattern discovery. Zhang et al. [11]
presents a problem of finding a reference feature centric
longest neighboring feature sets. Yoo et al. [22]–[25] proposes
variant co-location mining problems to discover compact sets
of co-locations. Wang et al. [10] presents techniques to find
star-like and clique topological patterns from spatiotemporal
data.

General data mining literature has formerly employed par-
allel methods since its very early days [26]. Zaki [27] presents
the survey work of parallel and/or distributed algorithms
for association rules mining. There are many novel parallel
mining methods as well as proposals that parallelize existing
frequent itemset mining techniques such as APriori [21] and
FP-growth [28]. However, the number of algorithms that
are adapted to the MapReduce framework is rather limited.
Some works [29], [30] suggest counting methods to compute
the support of every itemset in a single MapReduce round.
Different adaptations of APriori to MapReduce are also shown
in [31], [32]. Lin et al. [31] presents three different pass
counting strategies that are adaptations of Apriori on multiple
MapReduce rounds. An adaptation of FP-Growth to MapRe-
duce is presented in [28], [33], [34]. The PARMA algorithm by
Riondato et al. [35] finds approximate collections of frequent
itemsets. Unfortunately, none of these frameworks have been
directly adopted to spatial co-location mining. They are mainly
developed for finding frequent itemsets and association rules
from transaction databases like market-basket transaction data.
However, spatial data does not have the natural transaction con-
cept. Most of these algorithms feed input transaction records
to mappers and execute the frequency (e.g., support) counting
step in parallel. Whereas, our prevalence measures based on
spatial neighborhoods cannot be simply computed with the
frequency counting. To the best of our knowledge, our work
is the first parallel algorithm of mining spatial co-location
patterns on MapReduce.

III. SEARCH SPACE PARTITION FOR PARALLEL
PROCESSING

Spatial data objects and their neighbor relationships can
be represented in various ways. Figure 3 (a) represents them
with a neighbor graph G = (V,E) where a node, v ∈ V ,
represents a spatial object and an edge e ∈ E represents a
neighbor relationship between two spatial objects of different
event types. Note that we do not consider relationships among

same type events. Hence for every edge (u, v) ∈ E where
u, v ∈ V , v.type �= u.type. A subset C ⊆ V is a clique in graph
G if for every pair of vertexes u, v ∈ C, the edge (u, v) ∈ E.

For the discovery of co-location patterns, we need to find
all co-location instances forming cliques from the neighbor
graph. However, this process is a computationally expensive
operation. Even though we enumerate all maximal cliques in
a graph, the number of maximal cliques is exponential in
the number of vertexes [36]. In addition, the maximal clique
enumeration problem has been proven to be NP-hard [37].
Furthermore, the neighbor graph of dense data may not fit in
the memory of a single machine.

To take advantage of parallelism, the search space of co-
location patterns should be divided into independent partitions
so workers can process a given task with each partitioned
data synchronously. However, splitting all neighbor relations
into disjoint sets is not easy because spatial relationships are
continuous in space. Furthermore, we do not want to miss any
neighbor relationship during the partitioning process, and the
partition cost needs to be inexpensive. In fact, partitions with
minimal duplicate information are preferable.

We use a strategy to partition edges in the neighbor
graph to divide the search space of co-location patterns. The
edges of the neighbor graph are divided according to the
following simple rule: each vertex v (a spatial object) keeps the
relationship edge with other vertex u when v.type < u.type.
Here, we assume there is a total ordering of the event type (i.e.,
lexicographic). This partition strategy divides neighbor rela-
tions without duplicating or missing any relationships needed
for co-location mining as shown in our previous work [12].
Figure 3 (b) shows the status after the edge partitioning. For
neighborhoods divided by the edge-based partitioning method,
we define the following term.

Definition 2: Let G(V,E) be a neighbor graph. For v ∈ V ,
the conditional neighborhood of v, N (v), is defined as the
set of all the vertexes u adjacent to v including v itself which
satisfies a certain condition {v, u ∈ V : (u, v) ∈ E and v.type
< u.type }

C.3

A.4

C.2 B.4

A.3

C.1

 A.1

B.1

 A.1

C.1

B.1

B.3
C.3B.3

A.3

C.1
C.1

C.1

A.4

B.4

A.2

C.2

B.5

B.2

B.3

B.4

A.2

C.2

C.3
C.2
C.1

B.2
B.1

(b) Edge−based partitioning

A.1 , B.1 , C.1

A.4 , C.1
A.3 , B.3 , C.1
A.2 , B.4 , C.2

B.3 , C.1, C.3

B.5
B.4 , C.2

(c) Conditional
neighborhood records

(a) A neighbor graph

Figure 3. Spatial neighborhood partitioning

27272727

The conditional neighborhood of a spatial object v is a set
of its neighbor objects whose event types are greater than the
event type of v including the object itself, v. All objects in
N (v) are called star neighbors of v. Figure 3 (c) represents
the spatial objects and their neighbor relations with conditional
neighborhood records. The conditional neighborhood of A.3,
N (A.3), is {A.3, B.3, C.1}, N (B.3) is {B.3, C.1, C.3}, and
so on. When the neighborhood records are provided to the
MapReduce job of co-location mining, MapReduce partitions
the records into equal sized blocks and distributes the blocks
evenly to the distributed file systems. Each mapper collects co-
location instances from assigned neighborhood records, and the
outputs are merged for the reducer which determines frequent
co-located event sets.

IV. A MAPREDUCE BASED CO-LOCATION ALGORITHM

Given a spatial data set, a neighbor relationship, and a min-
imum prevalence threshold, the proposed algorithm discovers
prevalent co-located event sets through two main tasks:

• Spatial neighborhood partition which divides the co-
location search space.

• Parallel co-located event set search, where co-location
instances are searched by each map worker syn-
chronously, and then merged so that reducers find
prevalent co-located event sets based on the merged
instance sets.

Figure 4 shows the overall algorithmic framework of co-
location mining on MapReduce.

A. Spatial Neighborhood Partition

For the spatial neighborhood partition task, we use two
MapReduce jobs. The first job searches all neighboring pairs,
and the second job generates the conditional neighborhood
records from the neighboring pairs. Figure 5 and 6 show the
pseudo codes.

The MapReduce framework splits the input data records
into physical blocks without considering the geolocation of a
data point. However, through the map function, we rearrange
the data points for parallel neighbor search in the partitioned
space. Space partitioning is the process of dividing a space
into non-overlapping/overlapping regions. According to the
geographic location of data point and the space partitioning
strategy used, a grid (partition) number is assigned to each
data point. The mapper then outputs a key-value pair 〈key′ =
gridno, value′ = o〉 where o ∈ S is a data point object.
After all mapper instances have finished, for each key′ as-
signed by the mappers, the MapReduce infrastructure collects
corresponding values, [value′] (here, a set of o), and feeds the
reducers with key-value pairs 〈key′ = gridno, [value′ = o]〉.
The reduce function loads a given neighbor distance threshold
(dist), finds all neighbor object pairs in the [value′], and
outputs 〈key′′ = oi, value′′ = oj〉, where oi, oj ∈ [value′]
and distance(oi, oj) ≤ dist. The reduce uses a computational
geometry algorithm, e.g., a plane-sweep algorithm [38], for the
neighbor search. The Reduce function of Figure 5 shows the
plane sweep pseudo code of the neighbor search.

The next job is to generate the list of neighbors of each ob-
ject according to the definition of the conditional neighborhood

�������	�
������
�����	
�

>����#�"�?�# �?@$Q�>\������#��	Q

��������
������	�������
�	���

>�?�# �?@Q>����#�"�?�# �?@$Q

>����#��	Q�

>�?�# ^"�?�$Q

�����
��������
���������	
�

>����

�
#
��

����Q

>����

�
#
%��

����&Q

>��_����
��
����
�
�
#�
	���������Q>�?�#�^"�?�$Q

��	

������
�
�`����
�������
����

����

������

|��
���
������

����

��!	�
��	����������
!��
���

|����	�������
���_
����
�������
�
�

^��\+���+����
������

������
~�
	�
������
�
�
 ��	 ������

��	

������

^��\+����
��

�����

	����������

+��
+���

�+�������\+����
���

����

������

*����+�����
���\+�����\�	���

~

�\����\�������

��
+����
��	���

^��\+����	���

������
��
+��
���\+���+����������

��������	
����
��

>\������#�%	&Q

>�?�# %�?@&Q

�����

�
#
��_����
������

�����

�����	

���
�����

�
�`�#�	��� ����
�

���
������
��
��
�

>����
#���Q >����
#�����
Q��	
����
�
�	���7��?�

������
����
�����
���@��

>����
#�%�&Q
>�?�#�^"�?�$Q

^��\+���+����
������

�����
�
�	�#�����
�
���

��������	
����
��
��������	
����

��������	
����
��

���	���	�������

����
���@��

����^�

Figure 4. A MapReduce algorithmic framework for co-location mining

(Definition 2). As shown in Figure 4, the map function uses
the output from the previous job. When each mapper instance
starts, the instance is fed with the shards of neighbor pairs,
〈key = oi, value = oj〉. If oj and oi are the same object,
or oj’s event type is greater than oi’s event type, the mapper
outputs a key-value pair 〈key′ = oi, value′ = oj〉. A reducer
sorts the objects in the value list [oj] by their event type. The

1: procedure MAPPER(key, value=o)
2: gridno ← findRegion(o)
3: emit(gridno, o)
4: end procedure
5: procedure REDUCER(key=gridno, value=[o])
6: dist ← load(‘neighbor distance threshold’)
7: objectSet ← [o]
8: sort(objectSet, ‘x’)
9: activeSet ← ∅

10: j ← 1
11: n ← length(objectSet)
12: for i ← 1, n do
13: while (objectSet[i].x-objectSet[j].x) > dist do
14: remove(activeSet, objectSet[j])
15: j ← j+1
16: end while
17: range ← subset(activeSet, objectSet[i].y-dist, object-

Set[i].y+dist)
18: for all obj ∈ range do
19: if distance(objectSet[i], obj) ≤ dist then
20: emit(objectSet[i], obj)
21: end if
22: end for
23: add(activeSet, objectSet[i])
24: emit(objectSet[i], objectSet[i])
25: end for
26: end procedure

Figure 5. Neighbor search

28282828

1: procedure MAPPER(key=oi, value=oj)
2: if oi==oj or oi.type < oj .type then
3: emit(oi, oj)
4: end if
5: end procedure
6: procedure REDUCER(key=oi, value=[oj])
7: nRecord ← oi ∪ sort([oj])
8: emit(oi, nRecord)
9: end procedure

Figure 6. Neighbor grouping

sorted list becomes the conditional neighborhood of oi, N (oi).
The reducer finally outputs 〈key′′ = oi, value′′ = N (oi)〉.

B. Parallel Co-located Event Set Search

After the preprocess task finishes, the parallel co-location
mining task starts. Before this work, we have a job that counts
and saves the number of object instances per event type for
future prevalence calculation (Figure 7).

The prevalent co-located event set search is conducted
in a level-wise manner. It begins with size k=2 co-location
discovery. The proposed approach finds co-location patterns
without the candidate set generation. When each mapper
instance starts, the mapper is fed with the shards of neigh-
borhood records, 〈key, value = N (oi)〉. Per each N (oi) =
{oi, o1, . . . , om}, the mapper performs the following steps:
1) For each event object oj ∈ N (oi) where oi �= oj and
1 ≤ j ≤ m, remove oj from N (oi) if the oj’s type is not in-
cluded in size k-1 co-located patterns, 2) collect all size k can-
didate instances CI which start with oi, i.e., {oi, o1 . . . , ok−1}
from N (oi), and 3) filter true co-location instances from the
candidate instances, and outputs each instance with a key-value
pair 〈key′ = eventset, value′ = instance〉. Note that the
first object oi of the candidate instance CI={oi, o1 . . . , ok−1}
is the same as the first object oi in N (oi), and has a
neighbor relationship with the other objects in CI . However,
we cannot guarantee CI-oi={o1 . . . , ok−1} has neighbors with
each other. We check the cliqueness of the subset with the
information from instances of size k-1 co-location patterns.
If its sub-instance {o1, . . . , ok−1} is a co-location instance,
the candidate instance {oi, o1, . . . , ok−1} becomes a true co-
location instance.

After all mapper instances have finished, the MapReduce
collects the set of corresponding values per each key, and feeds
the reducers with key-value pairs 〈key′ = eventset, [value′ =
instance]〉, where [value′] is a list of co-location instances of
the event set, key′. A reducer computes the participation ratio
of each event type with the instance set, and then computes the
participation index of the event set. If the participation index
satisfies a given prevalence threshold, the reducer outputs the
frequent co-located event set 〈key′′ = eventset, value′′ =
participation index〉. The reducer also saves the co-location
instances of the co-located event set for the next size of
pattern mining. Figure 8 represents the pseudo code of this
MapReduce job. This job is repeated with the increase of
pattern size k=k+1.

V. EXPERIMENTAL EVALUATION

The proposed algorithm was implemented in Java, MapRe-
duce library functions and HBase library functions. HBase [39]
is a column-oriented database management system that runs
on top of the Hadoop Distributed File System (HDFS). HBase
was used to store the intermediate result such as prevalent co-
located event types and co-location instances. The performance
evaluation of the developed algorithm was conducted on Ama-
zon Web Services’ (AWS) Elastic MapReduce platform [40],
which provides resizable computing capacity in the cloud. For
this experiment, we used instance type m1.large in the AWS.
The version of Hadoop used was 1.0.3, and the version of
HBase was 0.94.8. We used real world data as well as synthetic
data for the experiment. The synthetic data was generated using
a spatial data generator used in [12].

In the first experiment, we compared the execution times
of two main tasks: neighborhood partition and co-location
search using synthetic datasets that differ in the number of data
points. The number of distinct feature types in the data was
50. The neighbor distance was fixed to 10. We used a single
node cluster for this experiment. Figure 9 (a) shows the result.
There was no significant difference in the execution time of
preprocessing spatial neighborhoods. However, the co-location
pattern search time was increased with almost the same ratio of
increased data points when the minimum prevalence threshold
was 0.3. Although all the data points were included in a

1: procedure MAPPER(key=oi, value=N)
2: emit(oi.type, 1)
3: end procedure
4: procedure REDUCER(key=event, value=[1])
5: count ← sum(value)
6: save(event, count)
7: emit(event, count)
8: end procedure

Figure 7. Count of instance objects of event

1: procedure MAPPER(key=oi, value=N)
2: for all o ∈ N do
3: if IsPrevalentType(o’s type) !=true then
4: N = N - o
5: end if
6: end for
7: k ← load(‘current pattern size’)
8: candiInstSets ← scanNTransaction(N , k)
9: for all instance ∈ candiInstSets do

10: if checkCliqueness(instance)==true then
11: eventset ← eventTypesOf(instance)
12: emit(eventset, instance)
13: end if
14: end for
15: end procedure
16: procedure REDUCER(key=eventset, value=[instance])
17: θ ← Load(‘min prevalence threshold’)
18: PI ← compParticipationIndex([instance])
19: if PI ≥ θ then
20: emit(eventset, PI)
21: save(eventset, [instance])
22: end if
23: end procedure

Figure 8. Co-location pattern search

29292929

 0

 200

 400

 600

 800

 1000

 1200

 1400

25K 50K 75K

E
xe

cu
tio

n
tim

e
(s

ec
)

Data size(# of points)

Co-location search
Neighborhood partition

(a)

 0

 200

 400

 600

 800

 1000

 1200

1 5 10 20

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cluster nodes

25K
50K
75K

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

1 5 10 20

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cluster nodes

neighbor distance=9
neighbor distance=10
neighbor distance=11
neighbor distance=12

(c)

 0

 500

 1000

 1500

 2000

 2500

 3000

1 5 10 20

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of cluster nodes

neighbor distance=0.1 mile
neighbor distance=0.15 mile
neighbor distance=0.2 mile

(d)

Figure 9. Experiment result: (a) Comparison of subtasks, (b) By number of
data points, (c) By neighbor distance, and (d) Real-world data

single partition during the data preprocess, the plane sweeping
method adopted to search all neighbor pairs showed a good
performance. Next, we changed the number of nodes in the
cluster to evaluate the speed increase of our algorithm. As
shown in Figure 9 (b), the execution time was decreased with
the increased number of nodes. The performance gain due to
the parallel processing was high when the number of nodes
was increased 1 to 5. After that, the gain was significantly
decreased in this experimental setting; although, the overall
execution time was decreased with the increase of nodes.

In the next experiment, we examined the effect of neighbor-
hood size in the parallel processing performance. The neigh-
borhood size was controlled with different neighbor distances.
Figure 9 (c) shows the experimental result on 50K synthetic
datasets with distances of 9, 10, 11, and 12. With an increase of
the neighbor distance, the execution time of co-location mining
is dramatically increased when the cluster has a single node.
However, with an increase in the number of cluster nodes, the
run time performance was significantly improved in all the
neighbor distance settings.

In the last experiment, we used real-world data which was a
set of 17K points of interest in the Washington D.C. area. The
number of feature types was 87. Figure 9 (d) shows the results
of the experiments with distances of 0.1, 0.15, and 0.2 miles,
respectively. The minimum prevalence threshold was fixed to
0.4. When the neighborhood size is large, the experiment
shows the computational performance of co-location mining
is greatly improved with the parallel processing.

VI. CONCLUSION

In this work, we have proposed to parallelize co-location
pattern mining to deal with large-scale spatial data. We have
developed a parallel/distributed co-location mining algorithm
on Hadoop’s MapReduce infrastructure. The proposed frame-
work partitions the spatial neighborhood without any missing

and duplicate neighbor relationships for co-location discovery.
Each worker independently conducts the co-location mining
process with a shard of neighborhood records. The co-location
patterns are searched in a level-wise manner by re-using
previously processed information and without the generation
of candidate sets. The experimental results show that our algo-
rithmic design approach is overall parallelizable and follows
a significant increase in speed, with respect to an increase in
nodes, when data size is large and the neighborhood is dense.

ACKNOWLEDGMENT

This work is partially supported by Air Force Research
Laboratory, Griffiss Business and Technology Park, and SUNY
Research Foundation.

REFERENCES

[1] R. R. Vatsavai, A. Ganguly, V. Chandola, A. Stefanidis, S. Klasky, and
S. Shekhar, “Spatiotemporal Data Mining in the Era of Big Spatial Data:
Algorithms and Applications,” in Proceedings of ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data, 2012, pp.
1–10.

[2] S. Shekhar and S. Chawla, Spatial Databases: A Tour. Prentice Hall,
ISBN 0130174807, 2003.

[3] K. Koperski and J. Han, “Discovery of Spatial Association Rules in
Geographic Information Databases,” in Proceedings of the International
Symposium on Large Spatial Data bases, 1995, pp. 47–66.

[4] S. Shekhar and Y. Huang, “Co-location Rules Mining: A Summary
of Results,” in Proceedings of International Symposium on Spatio and
Temporal Database, 2001, pp. 236–256.

[5] Y. Morimoto, “Mining Frequent Neighboring Class Sets in Spatial
Databases,” in Proceedings of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2001, pp. 353–358.

[6] C. F. Eick, R. Parmar, W. Ding, T. F. Stepinski, and J. Nicot, “Finding
Regional Co-location Patterns for Sets of Continuous Variables in Spa-
tial Datasets,” in Proceedings of the ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2008, pp.
1–10.

[7] X. Xiao, X. Xie, Q. Luo, and W. Ma, “Density based Co-location
Pattern Discovery,” in Proceedings of ACM SIGSPATIAL international
Conference on Advances in Geographic Information Systems, 2008, pp.
1–10.

[8] Y. Huang, J. Pei, and H. Xiong, “Mining Co-Location Patterns with
Rare Events from Spatial Data Sets,” Geoinformatica, 2006, pp. 239–
260.

[9] J. S. Yoo and S. Shekhar, “A Partial Join Approach for Mining Co-
location Patterns,” in Proceedings of the ACM International Symposium
on Advances in Geographic Information Systems, 2004, pp. 241–249.

[10] J. Wang, W. Hsu, and M. L. Lee, “A Framework for Mining Topo-
logical Patterns in Spatio-temporal Databases,” in Proceedings of ACM
International Conference on Information and Knowledge Management,
2005, pp. 429–436.

[11] X. Zhang, N. Mamoulis, D. Cheung, and Y. Shou, “Fast Mining of
Spatial Collocations,” in Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2004, pp. 384–
393.

[12] J. S. Yoo and S. Shekhar, “A Join-less Approach for Mining Spatial
Co-location Patterns,” IEEE Transactions on Knowledge and Data
Engineering, vol. 18, no. 10, 2006, pp. 1323–1337.

[13] “Apache Hadoop,” http://hadoop.apache.org/.
[14] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,

S. Tatikonda, Y. Tian, and S. Vaithyanathan, “SystemML: Declarative
Machine Learning on MapReduce,” in Proceedings of International
Conference on Data Engineering, 2011, pp. 231–242.

[15] “Giraph,” http://giraph.apache.org/.
[16] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, 2008, pp.
107–113.

30303030

[17] T. Elsayed, J. Lin, and D. W. Oard, “Pairwise Document Similarity in
Large Collections with MapReduce,” in Annual Meeting of the Associ-
ation for Computational Linguistics on Human Language Technologies,
2008, pp. 265–268.

[18] A. Ene, S. Im, and B. Moseley, “Fast Clustering using MapReduce,” in
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2011, pp. 681–689.

[19] W.Ding, R. Jiamthapthaksin1, R. Parmar, D. Jiang, T. F. Stepinski,
and C. F. Eick, “Towards Region Discovery in Spatial Datasets,” in
Proceedings of International Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 2008, pp. 88–99.

[20] P. Mohan, S. Shekhar, J. Shine, J. ROgers, Z. Jiang, and N. Wayant,
“A Neighborhood Graph based Approach to Regional Co-location
Pattern Discovery: A Summary of Results,” in Proceedings of the ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2011, pp. 122–132.

[21] R. Agarwal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” in Proceedings of International Conference
on Very Large Data Bases, 1994, pp. 487–499.

[22] J. S. Yoo and M. Bow, “Mining Top-k Closed Co-location Patterns,” in
Proceedings of IEEE International Conference on Spatial Data Mining
and Geographical Knowledge Services, 2011, pp. 100–105.

[23] J. S. Yoo and M. Bow, “Finding N-Most Prevalent Colocated Event
Sets,” in Proceedings of International Conference on Data Warehousing
and Knowledge Discovery, 2009, pp. 415–427.

[24] J. S. Yoo and M. Bow, “Mining Spatial Colocation Patterns: A Different
Framework,” Data Mining and Knowledge Discovery, 2012, pp. 159–
194.

[25] J. S. Yoo and M. Bow, “Mining Maximal Co-located Event Sets,” in
Proceedings of Pacific-Asia International Conference on Knowledge
Discovery and Data Mining, 2011, pp. 351–362.

[26] R. Agrawal and J. Shafer, “Parallel Mining of Association Rules,” IEEE
Transactions on Knowledge and Data Engineering, 1996, pp. 962–969.

[27] M. Zaki, “Parallel and Distributed Association Mining: A Survey,”
Concurrency, IEEE, vol. 7, no. 4, 1999, pp. 14–25.

[28] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns Without Candidate
Generation,” SIGMOD Record, vol. 29, 2000, pp. 1–12.

[29] L. Li and M. Zhang, “The Strategy of Mining Association Rule based
on Cloud Computing,” in Proceedings of International Conference on
Business Computing and Global Information, 2011, pp. 475–478.

[30] X. Y. Yang, Z. Liu, and Y. Fu, “MapReduce as a Programming
Model for Association Rules Algorithm on Hadoop,” in Proceedings
of International Conference on Information Sciences and Interaction
Sciences (ICIS), 2010, pp. 99–102.

[31] M. Y. Lin, P. Y. Lee, and S. C. Hsueh, “Apriori-based Frequent
Itemset Mining Algorithms on MapReduce,” in Proceedings of the
International Conference on Ubiquitous Information Management and
Communication, 2012, pp. 1–8.

[32] N. Li, L. Zeng, W. He, and Z. Shi, “Parallel Implementation of Apriori
Algorithm based on MapReduce,” in Proceedings of ACIS International
Conference on Software Engineering, Artificial Intelligence, Network-
ing and Parallel/Distributed Computing, 2012, pp. 236–241.

[33] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “PFP:
Parallel FP-Growth for Query Recommendation,” in Proceedings of
ACM Conference on Recommender systems, 2008, pp. 107–114.

[34] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng, “Balanced
Parallel FP-Growth with MapReduce,” in Proceedings of International
Conference on Information Computing and Telecommunications, 2010,
pp. 243–246.

[35] M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal, “PARMA:
A Parallel Randomized Algorithm for Approximate Association Rules
Mining in MapReduce,” in Proceedings of ACM international Confer-
ence on Information and knowledge management, 2012, pp. 85–94.

[36] J. Moon and L. Moser, “On Cliques in Graphs,” Israel Journal of
Mathematics, vol. 3, 1965, pp. 23–28.

[37] J. L. E. Lawler and A. R. Kan, “Generating All Maximal Independent
Sets: NP-Hardness and Polynomial-time Algorithms,” Israel Journal of
Mathematics, vol. 3, 1965, pp. 23–28.

[38] L. Arge, O. Proceedingspiuc, S. Ramaswamy, T. Suel, and J. Vitter,
“Scalable Sweeping-Based Spatial Join,” in Proceedings of International
Conference on Very Large Data Bases, 1998, pp. 570–581.

[39] “Apache HBase,” http://hbase.apache.org/.
[40] “Amazon Elastic MapReduce (Amazon EMR),”

http://aws.amazon.com/elasticmapreduce/.

31313131

