Al For People Workshop, 2020 9th August, 2020

Who am I?

- Research Engineer at FAIR.
- Interested in Lifelong Learning and Reinforcement Learning.

Who am I?

- Research Engineer at FAIR.
- Interested in Lifelong Learning and Reinforcement Learning.
- This talk is based on a recently published report [1].
- Worked on this report while I was a graduate student at Mila, University of Montreal.

[1]: https://www.towardtrustworthyai.com/

• Initiated with an interdisciplinary expert workshop in San Francisco in April 2019.

- Initiated with an interdisciplinary expert workshop in San Francisco in April 2019.
- Joint effort of multiple-stakeholders, 50+ authors from 25+ labs across industry and academia.

- Initiated with an interdisciplinary expert workshop in San Francisco in April 2019.
- Joint effort of multiple-stakeholders, 50+ authors from 25+ labs across industry and academia.
- Propose ten concrete mechanisms to move toward trustworthy Al development.

- Initiated with an interdisciplinary expert workshop in San Francisco in April 2019.
- Joint effort of multiple-stakeholders, 50+ authors from 25+ labs across industry and academia.
- Propose ten concrete mechanisms to move toward trustworthy Al development.
- https://www.towardtrustworthyai.com/

Miles Brundage^{1†}, Shahar Avin^{3,2†}, Jasmine Wang^{4,29†‡}, Haydn Belfield^{3,2†}, Gretchen Krueger^{1†}, Gillian Hadfield^{1,5,30}, Heidy Khlaaf⁶, Jingying Yang⁷, Helen Toner⁸, Ruth Fong⁹, Tegan Maharaj^{4,28}, Pang Wei Koh¹⁰, Sara Hooker¹¹, Jade Leung¹², Andrew Trask⁹, Emma Bluemke⁹, Jonathan Lebensold^{4,29}, Cullen O'Keefe¹, Mark Koren¹³, Théo Ryffel¹⁴, JB Rubinovitz¹⁵, Tamay Besiroglu¹⁶, Federica Carugati¹⁷, Jack Clark¹, Peter Eckersley⁷, Sarah de Haas¹⁸, Maritza Johnson¹⁸, Ben Laurie¹⁸, Alex Ingerman¹⁸, Igor Krawczuk¹⁹, Amanda Askell¹, Rosario Cammarota²⁰, Andrew Lohn²¹, David Krueger^{4,27}, Charlotte Stix²², Peter Henderson¹⁰, Logan Graham⁹, Carina Prunkl¹², Bianca Martin¹, Elizabeth Seger¹⁶, Noa Zilberman⁹, Seán Ó hÉigeartaigh^{2,3}, Frens Kroeger²³, Girish Sastry¹, Rebecca Kagan⁸, Adrian Weller^{16,24}, Brian Tse^{12,7}, Elizabeth Barnes¹, Allan Dafoe^{12,9}, Paul Scharre²⁵, Ariel Herbert-Voss¹, Martijn Rasser²⁵, Shagun Sodhani^{4,27}, Carrick Flynn⁸, Thomas Krendl Gilbert²⁶, Lisa Dyer⁷, Saif Khan⁸, Yoshua Bengio^{4,27}, Markus Anderljung¹²

¹OpenAI, ²Leverhulme Centre for the Future of Intelligence, ³Centre for the Study of Existential Risk,
⁴Mila, ⁵University of Toronto, ⁶Adelard, ⁷Partnership on AI, ⁸Center for Security and Emerging Technology,
⁹University of Oxford, ¹⁰Stanford University, ¹¹Google Brain, ¹²Future of Humanity Institute,
¹³Stanford Centre for AI Safety, ¹⁴École Normale Supérieure (Paris), ¹⁵Remedy.AI,
¹⁶University of Cambridge, ¹⁷Center for Advanced Study in the Behavioral Sciences, ¹⁸Google Research,
¹⁹École Polytechnique Fédérale de Lausanne, ²⁰Intel, ²¹RAND Corporation,
²²Eindhoven University of Technology, ²³Coventry University, ²⁴Alan Turing Institute,
²⁵Center for a New American Security, ²⁶University of California, Berkeley,
²⁷University of Montreal, ²⁸Montreal Polytechnic, ²⁹McGill University,

• Mechanisms to enable greater understanding AI systems.

- Mechanisms to enable greater understanding AI systems.
- Can support claims such as:
 - "This system is robust to distributional shifts"
 - "This system provides repeatable or reproducible results."

Reproducibility

Formal Verification

Formal Verification

Validation of ML by ML

Formal Verification

Practical Verification

Formal Verification

Practical Verification Reproducibility vs Replicability

Reproducibility vs Replicability

- Replicability/Repeatability
 - Discrete technical results being reproducible, given the same initial conditions.

Reproducibility vs Replicability

- Replicability/Repeatability
 - Discrete technical results being reproducible, given the same initial conditions.
- Reproducibility
 - Reported performance gains carrying over to different contexts and implementations.

• Publication of models, and code enable others to verify results.

- Publication of models, and code enable others to verify results.
- Reproducibility increases confidence in the robustness of the method.

- Publication of models, and code enable others to verify results.
- Reproducibility increases confidence in the robustness of the method.
- Incentivize reproducibility of reported results.
 - <u>https://www.acm.org/publications/policies/artifact-review-badging</u>
 - <u>https://reproindex.com/event/reprosml2020</u>
 - <u>http://cknowledge.org/request.html</u>
 - <u>https://reproducibility-challenge.github.io/neurips2019/</u>

Reproducibility

Formal Verification

Validation of ML by ML

Practical Verification

• Use formal methods of mathematics to verify that the system satisfies some conditions.

- Use formal methods of mathematics to verify that the system satisfies some conditions.
- ML systems are generally not subjected to such rigor.

- Use formal methods of mathematics to verify that the system satisfies some conditions.
- ML systems are generally not subjected to such rigor.
- Techniques (for ML systems) are still in infancy.

Challenges to Formal verification

• Need to reconceive and redevelop traditional formal properties.

Challenges to Formal verification

- Need to reconceive and redevelop traditional formal properties.
- Difficulty of modelling ML systems as mathematical objects.

Challenges to Formal verification

- Need to reconceive and redevelop traditional formal properties.
- Difficulty of modelling ML systems as mathematical objects.
- The size of real-world ML models can be more than the limits that existing verification techniques can work with.

Formal Verification

Validation of ML by ML

Practical Verification

Validation of ML by ML Systems

• Alternative to formal verification - more practical but less robust.

Validation of ML by ML Systems

- Alternative to formal verification more practical but less robust.
- An example
 - Adaptive Stress Testing (AST) uses RL to find the most likely failure of a system for a given scenario [1]
 - It is used to validate aircraft collision avoidance software [2].

^{[1]:} Mark Koren, Anthony Corso, and Mykel Kochenderfer. "The Adaptive Stress Testing Formulation". In: RSS 2019: Workshop on Safe Autonomy. Freiburg, 2019. URL: https://openrev.iew.net/pdf?id=rJgoNK-oaE.

^[2] Ritchie Lee et al. "Adaptive stress testing of airborne collision avoidance systems". In: AIAA/IEEE Digital Avionics Systems Conference - Proceedings. Institute of Electrical and Electronics Engineers Inc., Oct. 2015. ISBN: 9781479989409. DOI: 10.1109/DASC.2015.7311613. URL: htt ps://ieeexplore.ieee.org/document/7311613/versions.

Formal Verification

Validation of ML by ML

• Use scientific protocols to characterize a model's data, assumptions, and performance.

- Use scientific protocols to characterize a model's data, assumptions, and performance.
- Training data can be rigorously evaluated for representativeness

- Use scientific protocols to characterize a model's data, assumptions, and performance.
- Training data can be rigorously evaluated for representativeness
- Assumptions can be characterized by clearly output uncertainties

- Use scientific protocols to characterize a model's data, assumptions, and performance.
- Training data can be rigorously evaluated for representativeness
- Assumptions can be characterized by clearly output uncertainties
- Performance can be characterized by measuring generalization and performance heterogeneity across data subsets.

Interpretability

Privacy preserving ML

Interpretability

Privacy preserving ML • Traceable log of steps in system design, testing, and operation.

- Traceable log of steps in system design, testing, and operation.
- Already used in numerous industries and safety-critical systems.

- Traceable log of steps in system design, testing, and operation.
- Already used in numerous industries and safety-critical systems.
- Documenting audit trails can help make AI systems auditable.

- Traceable log of steps in system design, testing, and operation.
- Already used in numerous industries and safety-critical systems.
- Documenting audit trails can help make AI systems auditable.
- For example, code changes, logs of training runs, all outputs of a model, etc.

- Traceable log of steps in system design, testing, and operation.
- Already used in numerous industries and safety-critical systems.
- Documenting audit trails can help make AI systems auditable.
- For example, code changes, logs of training runs, all outputs of a model, etc.
- It could be useful if standards are defined for audit trails in AI.

Interpretability

Privacy preserving ML • Difficult to verify the claims about AI systems if we can not interpret their output.

- Difficult to verify the claims about AI systems if we can not interpret their output.
- Moreover, interpretability is a multi-faceted term.

- Difficult to verify the claims about AI systems if we can not interpret their output.
- Moreover, interpretability is a multi-faceted term.

- Following directions could be useful for supporting verifiable claims:
 - Developing and establishing consensus on the criteria, objectives, and frameworks for interpretability research
 - Constraining models to be interpretable by default, instead of interpret a model post-hoc.

Interpretability

58

• Aims to protect the privacy of data/models during training, evaluation and deployment.

- Aims to protect the privacy of data/models during training, evaluation and deployment.
- Federated learning:
 - Many clients users collaboratively train a model without sharing data with each-other.

- Aims to protect the privacy of data/models during training, evaluation and deployment.
- Federated learning:
 - Many clients users collaboratively train a model without sharing data with each-other.
 - Learning model could still memorize some data.

- Aims to protect the privacy of data/models during training, evaluation and deployment.
- Federated learning:
 - Many clients users collaboratively train a model without sharing data with each-other.
 - Learning model could still memorize some data.
 - Can be mitigated using differential privacy techniques

- Differential privacy
 - Add controlled amount of statistical noise to the dataset

- Differential privacy
 - Add controlled amount of statistical noise to the dataset
 - Obscure contribution from individual data points while retraining the group patterns.

- Differential privacy
 - Add controlled amount of statistical noise to the dataset
 - Obscure contribution from individual data points while retraining the group patterns.
 - Works well with federated learning

- Encrypted Computation
 - The model is trained and deployed on encrypted data

- Encrypted Computation
 - The model is trained and deployed on encrypted data
 - Eg: homomorphic encryption, secure multi-party computation, and functional encryption

- Encrypted Computation
 - The model is trained and deployed on encrypted data
 - Eg: homomorphic encryption, secure multi-party computation, and functional encryption
 - Such models can be securely shared.

Thank you

@shagunsodhani