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Who am I ?
  
● Research Engineer at FAIR.

● Interested in Lifelong Learning and 
Reinforcement Learning.

● This talk is based on a recently published 
report [1].

● Worked on this report while I was a 
graduate student at Mila, University of 
Montreal.
[1]: https://www.towardtrustworthyai.com/
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Highlights of the report

● Initiated with an interdisciplinary expert workshop in San Francisco 
in April 2019.

● Joint effort of multiple-stakeholders, 50+ authors from 25+ labs 
across industry and academia.

● Propose ten concrete mechanisms to move toward trustworthy AI 
development.

● https://www.towardtrustworthyai.com/
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Software Mechanisms

● Mechanisms to enable greater understanding AI systems.

19



Software Mechanisms

● Mechanisms to enable greater understanding AI systems.

● Can support claims such as:

○ “This system is robust to distributional shifts”

○ “This system provides repeatable or reproducible results.”
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Reproducibility vs Replicability
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Reproducibility vs Replicability

● Replicability/Repeatability
○ Discrete technical results being reproducible, given the same 

initial conditions.

● Reproducibility
○ Reported performance gains carrying over to different contexts 

and implementations. 
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Reproducibility

● Publication of models, and code enable others to verify results.

● Reproducibility increases confidence in the robustness of the 
method.

● Incentivize reproducibility of reported results.

○ https://www.acm.org/publications/policies/artifact-review-badging 
○ https://reproindex.com/event/reprosml2020
○ http://cknowledge.org/request.html
○ https://reproducibility-challenge.github.io/neurips2019/ 31
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Formal verification

● Use formal methods of mathematics to verify that the system 
satisfies some conditions.

33



Formal verification

● Use formal methods of mathematics to verify that the system 
satisfies some conditions.

● ML systems are generally not subjected to such rigor.

34



Formal verification

● Use formal methods of mathematics to verify that the system 
satisfies some conditions.

● ML systems are generally not subjected to such rigor.

● Techniques (for ML systems) are still in infancy.
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Challenges to Formal verification

● Need to reconceive and redevelop traditional formal properties.

● Difficulty of modelling ML systems as mathematical objects.

● The size of real-world ML models can be more than the limits that 
existing verification techniques can work with.

38



39

Software Mechanisms

Formal 
VerificationReproducibility Validation of 

ML by ML
Practical 

Verification



Validation of ML by ML Systems

● Alternative to formal verification - more practical but less robust.

40



Validation of ML by ML Systems

● Alternative to formal verification - more practical but less robust.

● An example

○ Adaptive Stress Testing (AST) uses RL to find the most likely 
failure of a system for a given scenario [1]

○ It is used to validate aircraft collision avoidance software [2].

[1]: Mark Koren, Anthony Corso, and Mykel Kochenderfer. “The Adaptive Stress Testing Formulation”. In: RSS 2019: Workshop on Safe Autonomy. Freiburg, 
2019. URL: https://openrev iew.net/pdf?id=rJgoNK-oaE. 
[2] Ritchie Lee et al. “Adaptive stress testing of airborne collision avoidance systems”. In: AIAA/IEEE Digital Avionics Systems Conference - Proceedings. 
Institute of Electrical and Electronics Engineers Inc., Oct. 2015. ISBN: 9781479989409. DOI: 10.1109/DASC.2015.7311613. URL: htt 
ps://ieeexplore.ieee.org/document/7311613/versions.
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Practical Verification

● Use scientific protocols to characterize a model’s data, assumptions, 
and performance. 
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Practical Verification

● Use scientific protocols to characterize a model’s data, assumptions, 
and performance. 

● Training data can be rigorously evaluated for representativeness

● Assumptions can be characterized by clearly output uncertainties

● Performance can be characterized by measuring generalization and 
performance heterogeneity across data subsets.
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● Traceable log of steps in system design, testing, and operation.
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Audit Trails

● Traceable log of steps in system design, testing, and operation.

● Already used in numerous industries and safety-critical systems.

● Documenting audit trails can help make AI systems auditable.

● For example, code changes, logs of training runs, all outputs of a 
model, etc.

● It could be useful if standards are defined for audit trails in AI.
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Interpretability

● Difficult to verify the claims about AI systems if we can not interpret 
their output.
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Interpretability

● Difficult to verify the claims about AI systems if we can not interpret 
their output.

● Moreover, interpretability is a multi-faceted term.

● Following directions could be useful for supporting verifiable claims:
○ Developing and establishing consensus on the criteria, 

objectives, and frameworks for interpretability research
○ Constraining models to be interpretable by default, instead of 

interpret a model post-hoc.
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Privacy Preserving Machine Learning

● Aims to protect the privacy of data/models during training, 
evaluation and deployment. 
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Privacy Preserving Machine Learning

● Aims to protect the privacy of data/models during training, 
evaluation and deployment. 

● Federated learning:
○ Many clients users collaboratively train a model without sharing 

data with each-other. 
○ Learning model could still memorize some data.
○ Can be mitigated using differential privacy techniques
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Privacy Preserving Machine Learning

● Differential privacy

○ Add controlled amount of statistical noise to the dataset

○ Obscure contribution from individual data points while 
retraining the group patterns. 

○ Works well with federated learning
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Privacy Preserving Machine Learning

● Encrypted Computation

○ The model is trained and deployed on encrypted data

○ Eg: homomorphic encryption, secure multi-party computation, 
and functional encryption

○ Such models can be securely shared.
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Thank you

@shagunsodhani


