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e Research Engineer at FAIR.

e Interested in Lifelong Learning and
Reinforcement Learning.

e Thistalkis based on a recently published
report [1].

e \Worked on this report while | was a
graduate student at Mila, University of
Montreal.

[]: https://vww.towardtrustworthyai.com/
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Highlights of the report

e Initiated with an interdisciplinary expert workshop in San Francisco
in April 2019.

e Joint effort of multiple-stakeholders, 50+ authors from 25+ labs
across industry and academia.

e Propose ten concrete mechanisms to move toward trustworthy Al
development.

e https://www.towardtrustworthyai.com/
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e Mechanisms to enable greater understanding Al systems.



Software Mechanisms

e Mechanisms to enable greater understanding Al systems.
e Can support claims such as:
o “This system is robust to distributional shifts”

o “This system provides repeatable or reproducible results.”
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e Replicability/Repeatability
o Discrete technical results being reproducible, given the same
initial conditions.
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Reproducibility vs Replicability

e Replicability/Repeatability
o Discrete technical results being reproducible, given the same
initial conditions.

e Reproducibility
o Reported performance gains carrying over to different contexts
and implementations.
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Reproducibility

e Publication of models, and code enable others to verify results.

e Reproducibility increases confidence in the robustness of the
method.

e Incentivize reproducibility of reported results.

https://www.acm.ora/publications/policies/artifact-review-badging

https://reproindex.com/event/reprosmi2020
http://cknowledge.org/request.ntml
https://reproducibility-challenge.github.io/neurips2019/

O O O O
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Formal verification

e Use formal methods of mathematics to verify that the system
satisfies some conditions.
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Formal verification

e Use formal methods of mathematics to verify that the system
satisfies some conditions.

e ML systems are generally not subjected to such rigor.

e Techniques (for ML systems) are still in infancy.
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Challenges to Formal verification

e Need to reconceive and redevelop traditional formal properties.
e Difficulty of modelling ML systems as mathematical objects.

e The size of real-world ML models can be more than the limits that
existing verification techniques can work with.
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Validation of ML by ML Systems

e Alternative to formal verification - more practical but less robust.
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Validation of ML by ML Systems

Alternative to formal verification - more practical but less robust.
An example

o Adaptive Stress Testing (AST) uses RL to find the most likely
failure of a system for a given scenario [1]

o Itis used to validate aircraft collision avoidance software [2].

[1]: Mark Koren, Anthony Corso, and Mykel Kochenderfer. “The Adaptive Stress Testing Formulation”. In: RSS 2019: Workshop on Safe Autonomy. Freiburg,

2019. URL: https://openrev iew.net/pdf?id=rJgoNK-oaE.

[2] Ritchie Lee et al. “Adaptive stress testing of airborne collision avoidance systems”. In: AIAA/IEEE Digital Avionics Systems Conference - Proceedings.
Institute of Electrical and Electronics Engineers Inc., Oct. 2015. ISBN: 9781479989409. DOI: 10.1109/DASC.2015.7311613. URL: htt
ps://ieeexplore.ieee.org/document/7311613/versions.

41



Reproducibility

Formal
Verification

Validation of
ML by ML

Practical
Verification

42




Practical Verification

e Use scientific protocols to characterize a model's data, assumptions,
and performance.
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Practical Verification

e Use scientific protocols to characterize a model's data, assumptions,
and performance.

e Training data can be rigorously evaluated for representativeness
e Assumptions can be characterized by clearly output uncertainties

e Performance can be characterized by measuring generalization and
performance heterogeneity across data subsets.
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Audit Trails

e Traceable log of steps in system design, testing, and operation.
e Already used in numerous industries and safety-critical systemes.
e Documenting audit trails can help make Al systems auditable.

e Forexample, code changes, logs of training runs, all outputs of a
model, etc.

e |t could be useful if standards are defined for audit trails in Al.
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Interpretability

e Difficult to verify the claims about Al systems if we can not interpret
their output.
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Interpretability

e Difficult to verify the claims about Al systems if we can not interpret
their output.

e Moreover, interpretability is a multi-faceted term.

e Following directions could be useful for supporting verifiable claims:
o Developing and establishing consensus on the criteria,
objectives, and frameworks for interpretability research
o Constraining models to be interpretable by default, instead of
Interpret a model post-hoc.
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Privacy Preserving Machine Learning

e Aims to protect the privacy of data/models during training,
evaluation and deployment.
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Privacy Preserving Machine Learning

e Aims to protect the privacy of data/models during training,
evaluation and deployment.

e Federated learning:
o Many clients users collaboratively train a model without sharing

data with each-other.
Learning model could still memorize some data.

Can be mitigated using differential privacy techniques
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o Obscure contribution from individual data points while
retraining the group patterns.
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Privacy Preserving Machine Learning

e Differential privacy
o Add controlled amount of statistical noise to the dataset

o Obscure contribution from individual data points while
retraining the group patterns.

o Works well with federated learning
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Privacy Preserving Machine Learning

e Encrypted Computation

o The modelis trained and deployed on encrypted data
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Privacy Preserving Machine Learning

e Encrypted Computation
o The modelis trained and deployed on encrypted data

o Eg:homomorphic encryption, secure multi-party computation,
and functional encryption

o Such models can be securely shared.
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Thank you

@shagunsodhani



