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Motivation: Facilitate research in multitask RL MTRL: Baselines for Multitask RL MTRL in action
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MTRL

MTEnv MTRL Design

Directions of Development

1. MTRL has two building blocks: (i) Base (single task) policy and (i) Components to augment the base policy for multi-task setup.

2. The ideal workflow is to start with a base policy and add multi-task components as they seem fit.

MTEnv: Standardize multitask RL

3. The components are plug and play, thus giving a lot of freedom and flexibility to the end user. Su PpPO rti ng more environ ments Su PpPO rti ng more algorlth MSs
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environments and provide better benchmarks Sbservaton - | i
1. RoboSuite (Simulation Framework and Benchmark for Robot Learning) 1. More base policies: PPO, Impala etc.
2. Issac Gym (Physics simulation environment for RL) 2. Context Aware Dynamics Model
Extend the OpenAl Gym[1] interface with first-class support for multi-task RL. Supported Environments 3. MiniTrackmania (GQDOT—baseq racing simulator) 3 HyPerNetworks
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print (obs) 5. Mvfst-rl (Network simulator for congestion control algorithms) 5. Mixture of Expert based models
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# array([-0.76422 , -0.15384133, 0.74575615, -0.117249941, dtype-float32) Control Tasks P ing Py Supporting more setups Scaling and ease of use
obs, reward, done, info = env.step(action) values A
HPEMDP[3] Environments from DeepMind Control Suite[4] with 1. Continual/Lifelong Reinforcement Learning 1. Memory-efficient replay buffers
Collection of multitask RL envi ; . varying physical values 2. State/action spaces could change across tasks 2. Scaling policy components
ollection of multitas environments . : . " . L
Action 3. Environments with action conditioned dynamics 3. Add examples of complex training pipelines
from mtenv import make - . . . 4. Language conditioned multi-task RL 4. Pre-trained models and weights
env = make("MT-HiPBMDP-Finger-Spin-vary-size-v0") MetaWorld[2] 50 distinct robotics manipulation tasks
env.reset()
Pixel Mazes[5] 2-D and 3-D mazes .
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