
Multi-task
Reinforcement Learning

@shagunsodhani

Facebook AI Research

Who am I?
● Research Engineer at Facebook AI Research

● Interested in Lifelong Reinforcement Learning

○ Training AI systems that can interact with and learn from the physical world and consistently
improve as they do so without forgetting the previous knowledge

● Also work on distributed optimization, generalization etc

Agenda
● Overview of (Single Task) Reinforcement Learning

○ What is reinforcement learning using the example of chatbots

○ Components - agent, environment, state-space, action-space, MDP, etc

○ Goal is set a common terminology

○ If you are well-versed in (single task) RL, feel free to jump ahead :)

Agenda
● Overview of (Single Task) Reinforcement Learning

● Introduce Multi Task Reinforcement Learning

○ Start with a general setup

○ Show some common building blocks / techniques for multi task RL

○ Add assumptions to the general setup and discuss how these assumptions lead to
different setups and how they influence the model architecture.

What is not on the Agenda
● Standard RL algorithms like policy gradients etc.

● Implementation details.

● Detailed discussion on specific papers.

● I would be overloading the notation at some places, to focus more on the
intuition.

Disclaimer
● This is not an exhaustive literature survey on multi task RL.

● We will look at some research papers and setups but there are a lot of
other important works.

● The focus will be on providing the motivation/intuition behind the
different setups.

Reinforcement Learning

Chatbot Example

● We want to develop a chatbot (aka
conversational agent) that can

○ engage humans in a
conversation [1]

○ improve user experience by
answering their questions [2]

[1]: https://developer.amazon.com/alexaprize/

[2]: https://www.intercom.com/blog/customer-service-chatbots/

Image by mohamed Hassan from Pixabay

https://pixabay.com/users/mohamed_hassan-5229782
https://pixabay.com/

Chatbot Example
Alice: Hi

Alice: I enjoy hard rock.

Alice: Led Zeppelin is one of my favorites too!
Also Pink Floyd.

[3]: [2004.13637] Recipes for building an open-domain chatbot

Bot: What kind of music do you like? I like all
kinds of music but country is my favorite.

Bot: Thats cool. Do you have a favorite band?
Mine is led zeppelin.

Bot: I like them too. My favorite album of
theirs is dark side of the moon.

Chatbot Example Agent’s view
Alice: Hi

[3]: [2004.13637] Recipes for building an open-domain chatbot

s1

Chatbot Example Agent’s view
Alice: Hi

Bot: What kind of music do you like? I like all
kinds of music but country is my favorite.

[3]: [2004.13637] Recipes for building an open-domain chatbot

s1

a1

Chatbot Example Agent’s view
Alice: Hi

Bot: What kind of music do you like? I like all
kinds of music but country is my favorite.

Alice: I enjoy hard rock.

[3]: [2004.13637] Recipes for building an open-domain chatbot

s1

a1

s2

Chatbot Example Agent’s view
Alice: Hi

Bot: What kind of music do you like? I like all
kinds of music but country is my favorite.

Alice: I enjoy hard rock.

Bot: Thats cool. Do you have a favorite band?
Mine is led zeppelin.

[3]: [2004.13637] Recipes for building an open-domain chatbot

s1

a1

s2

a2

Chatbot Example Agent’s view
...

Alice: I enjoy hard rock.

Bot: Thats cool. Do you have a favorite band?
Mine is led zeppelin.

Alice: Led Zeppelin is one of my favorites too!
Also Pink Floyd.

[3]: [2004.13637] Recipes for building an open-domain chatbot

s1

a1

s2

a2

s3

Sequential Decision Making

s1

a1

s2

a2

s3 s4

a3

Sequential Decision Making

s1

a1

s2

a2

s3 s4

a3

Inputs: state of a conversation

Sequential Decision Making

s1

a1

s2

a2

s3 s4

a3

Action: chatbot’s dialog in a conversation

Solving a Sequential Decision Making Problem

s1

a1

s2

a2

s3 s4

a3Predictions

Inputs

Solving a Sequential Decision Making Problem - I
We know the “right” predictions.

Solving a Sequential Decision Making Problem - I

s1

a1

s2

a2

s3 s4

a3Predictions

Inputs

A1 A2 A3Target

We know the “right” predictions.

Solving a Sequential Decision Making Problem - I
We know the “right” predictions. We can use supervised learning.

Solving a Sequential Decision Making Problem - I

s1

a1

s2

a2

s3 s4

a3Predictions

Inputs

A1 A2 A3Target
Minimize the difference
between the correct and
the predicted decisions

We know the “right” predictions. We can use supervised learning.

Chatbot Example
Alice: Hi

Bot: What kind of music do you like? I like all
kinds of music but country is my favorite.

a1

s1

Chatbot Example
Alice: Hi

Bot: What kind of music do you like? I like all
kinds of music but country is my favorite.

Bot: Do you like the weather these days? I find
it a little too windy.

a1

s1

b1 This alternate dialog is not
necessarily “wrong” if the goal
is to have an engaging
conversation.

Which sequence is better?

s1

a1

s2

a2

s3 s4

a3

s1

b1

u2

b2

u3 u4

b3

Which is the more engaging conversation?

Maybe we can ask the users to provide a rating at the end of the conversation.

Solving a Sequential Decision Making Problem - II

s1

a1

s2

a2

s3 s4

a3Predictions

Inputs

We do not know the “right” predictions. But we have a sense of “goodness” of our predictions.

Solving a Sequential Decision Making Problem - II

s1

a1

s2

a2

s3 s4

a3Predictions

Inputs

We do not know the “right” predictions. But we have a sense of “goodness” of our predictions. We can
use Reinforcement Learning.

Characteristics of Reinforcement Learning
1. Map input to some action.

[4]: Sutton & Barto Book: Reinforcement Learning: An Introduction

http://incompleteideas.net/book/the-book.html

Characteristics of Reinforcement Learning
1. Map input to some action.

2. Objective is to maximize a reward signal (rating in the previous example).

[4]: Sutton & Barto Book: Reinforcement Learning: An Introduction

http://incompleteideas.net/book/the-book.html

Characteristics of Reinforcement Learning
1. Map input to some action.

2. Objective is to maximize a reward signal (rating in the previous example).

3. Trial and error approach - the optimal action is not known, but has to be
discovered by interaction.

[4]: Sutton & Barto Book: Reinforcement Learning: An Introduction

http://incompleteideas.net/book/the-book.html

Characteristics of Reinforcement Learning
1. Map input to some action.

2. Objective is to maximize a reward signal (rating in the previous example).

3. Trial and error approach - the optimal action is not known, but has to be
discovered by interaction.

4. Delayed rewards - current action could affect all subsequent rewards.

[4]: Sutton & Barto Book: Reinforcement Learning: An Introduction

http://incompleteideas.net/book/the-book.html

Sequential Decision Making

s1

a1

s2

a2

s3 s4

a3

Observe -> Interact -> Observe -> Interact ...

Sequential Decision Making

s1

a1

s2

a2

s3 s4

a3 Agent

Environment

interactobserve

Observe -> Interact -> Observe -> Interact ...

Reinforcement Learning

Agent

The learner (eg chatbot)

Reinforcement Learning

Agent

Environment

Everything outside the agent

Reinforcement Learning

Agent

Environment

state (s)

Reinforcement Learning

Agent

Environment

state (s) action (a)

Characteristics of Reinforcement Learning
1. Map input to some action.

2. Objective is to maximize a reward signal (rating in the previous example).

3. Trial and error approach - the optimal action is not known, but has to be
discovered by interaction.

4. Delayed rewards - current action could affect all subsequent rewards.

[4]: Sutton & Barto Book: Reinforcement Learning: An Introduction

http://incompleteideas.net/book/the-book.html

Reinforcement Learning

Agentstate (s) action (a)

Reinforcement Learning

Agentstate (s) action (a)

Reinforcement Learning

Agentstate (s) action (a)

policy

Reinforcement Learning

Agentstate (s) action (a)

Policy: Function that maps input to some action

Characteristics of Reinforcement Learning
1. Map input to some action.

2. Objective is to maximize a reward signal (rating in the previous example).

3. Trial and error approach - the optimal action is not known, but has to be
discovered by interaction.

4. Delayed rewards - current action could affect all subsequent rewards.

[4]: Sutton & Barto Book: Reinforcement Learning: An Introduction

http://incompleteideas.net/book/the-book.html

Reinforcement Learning

Agent

Environment

state (s) action (a)

reward (r)

Reinforcement Learning

● Fineprint: We want to maximize the expected discounted reward and not just the immediate
reward.

● “discounted” means that immediate rewards are more valuable than rewards that are far off.

● For example, 100 $ today are more valuable than 100$ in the future.

Reinforcement Learning

Agent

Environment

state (st) action (at)

reward (rt)

Reinforcement Learning

Agent

Environment

state (st) action (at)

reward (rt)

s0

Reinforcement Learning

Agent

Environment

state (st) action (at)

reward (rt)

s0 a0

Reinforcement Learning

Agent

Environment

state (st) action (at)

reward (rt)

s0 a0 s1 r1

Reinforcement Learning

Agent

Environment

state (st) action (at)

reward (rt)

s0 a0 s1 r1 a1

Reinforcement Learning

Agent

Environment

state (st) action (at)

reward (rt)

s0 a0 s1 r1 a1 s2 r2

Mathematically

Agent

Environment

state (st) action (at)

reward (rt)

● State space - set of all possible states.

Mathematically

Agent

Environment

state (st) action (at)

reward (rt)

● State space - set of all possible states.

● Action space - set of all possible actions.

Mathematically

Agent

Environment

state (st) action (at)

reward (rt)

● State space - set of all possible states.

● Action space - set of all possible actions.

● Reward function - how much reward
does the agent get in state s when it
takes action a

○ rt = R(st, at)

Mathematically

Agent

Environment

state (st) action (at)

reward (rt)

● State space - set of all possible states.

● Action space - set of all possible actions.

● Reward function - how much reward
does the agent get in state s when it
takes action a

○ rt = R(st, at)

● Transition function - what is the next
state when the agent takes action a in
state s

○ st+1 = T(st, at)

Mathematically

Agent

Environment

state (st) action (at)

reward (rt)

● State space - set of all possible states.

● Action space - set of all possible actions.

● Reward function - how much reward
does the agent get in state s when it
takes action a

○ rt = R(st, at)

● Transition function - what is the next
state when the agent takes action a in
state s

○ st+1 = T(st, at)

Markov Decision Process (MDP) - Formalization of sequential decision making process

In Practice

Agent

Environment

state (st) action (at)

reward (rt)

In Practice

Agent

Environment

state (st) action (at)

reward (rt)

In Practice

Agent

Environment

state (st) action (at)

reward (rt)

● Encoder: maps the environment’s
observation/state to a vector.

In Practice

Agent

Environment

state (st) action (at)

reward (rt)

● Encoder: maps the environment’s
observation/state to a vector.

● Policy: map the vector to action.

In Practice

Agent

Environment

state (st) action (at)

reward (rt)

● Encoder: maps the environment’s
observation/state to a vector.

● Policy: map the vector to action.

● Value functions: how good a state (or
state-action pair) is.

In Practice

Agent

Environment

state (st) action (at)

reward (rt)

● Encoder: maps the environment’s
observation/state to a vector.

● Policy: map the vector to action.

● Value functions: how good a state (or
state-action pair) is.

● Reward function (that we learn): predict
the reward for a state-action pair.

In Practice

Agent

Environment

state (st) action (at)

reward (rt)

● Encoder: maps the environment’s
observation/state to a vector.

● Policy: map the vector to action.

● Value functions: how good a state (or
state-action pair) is.

● Reward function (that we learn): predict
the reward for a state-action pair.

● Transition function (that we learn):
predict the next state, given the current
state-action pair.

In Practice

Agent

Environment

state (st) action (at)

reward (rt)

● Encoder: maps the environment’s
observation/state to a vector.

● Policy: map the vector to action.

● Value functions: how good a state (or
state-action pair) is.

● Reward function (that we learn): predict
the reward for a state-action pair.

● Transition function (that we learn):
predict the next state, given the current
state-action pair.

● Replay buffer: if using off-policy learning

…...

So far
● We have seen the different components for a single-task RL problem.

● We intentionally did not discuss any RL algorithms (e.g. policy gradients).

● We assume we have access to an algorithm that can learn the policy.

● We will now look at different multi-task RL setups.

Multi-task Reinforcement Learning

Multi-task Reinforcement Learning

● We have n RL tasks to learn.

Multi-task Reinforcement Learning

● We have n RL tasks to learn.

● Each task has its own environment, state space, action space, reward function, transition
dynamics, etc.

Multi-task Reinforcement Learning

● We have n RL tasks to learn.

● Each task has its own environment, state space, action space, reward function, transition
dynamics, etc.

● This is the most general case of multi-task RL where we do not make any assumptions.

What do we care about

● We have the performance on n tasks (say R1, R2, … Rn) :

What do we care about

● We have the performance on n tasks (say R1, R2, … Rn) :

○ Average Performance - Average(R1, R2, … Rn)

What do we care about

● We have the performance on n tasks (say R1, R2, … Rn) :

○ Average Performance - Average(R1, R2, … Rn)

○ Median Performance - Median(R1, R2, … Rn)

What do we care about

● We have the performance on n tasks (say R1, R2, … Rn) :

○ Average Performance - Average(R1, R2, … Rn)

○ Median Performance - Median(R1, R2, … Rn)

○ Worst Performance - Min(R1, R2, … Rn)

Case I

● Each task has its own environment, state space, action space, reward function, transition
dynamics, etc.

● There is nothing common between the tasks. So there is no knowledge to share across the
tasks.

● The best we can do is to learn n agents, each trained for one task.

● Given a task, we lookup the agent for that task and we use that agent to solve the task.

Case I

One policy per task One agent per task

Case II - Shared state and action space

● Examples - Navigation, locomotion, interacting with objects

● The only multi-task algorithm we know so far is: one-agent-per-task. So we start with that.

● When training the n agents, we want to share knowledge between them.

● Distral [5] provides an effective mechanism for doing that.

[5]: [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175

Distral: Robust Multitask Reinforcement Learning

Image taken from [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175

Distral: Robust Multitask Reinforcement Learning

Image taken from [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175

Distral: Robust Multitask Reinforcement Learning

Image taken from [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175

Distral: Robust Multitask Reinforcement Learning

Image taken from [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175

Distral: Robust Multitask Reinforcement Learning

Image taken from [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175

Case II - Shared state and action space

● Distral [5] shares knowledge via distillation.

● Knowledge can also be shared by sharing parameters.

[5]: [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175

Sharing Parameters

One policy per task

Sharing Parameters

One policy per task

(state, task 1)

Sharing Parameters

(state, task 1)

action

One policy per task

Sharing Parameters

One policy per task Task specific policy heads

Sharing Parameters

Task specific policy heads

Sharing Parameters

Task specific policy heads

(state, task 1)

Sharing Parameters

Task specific policy heads

(state, task 1)

Sharing Parameters

Task specific policy heads

(state, task 1)

action

Sharing Parameters

One agent per task

Sharing Parameters

One agent per task Task specific policy heads and encoders

Sharing Parameters

One agent per task Task specific policy heads and
shared encoders

Sharing Parameters

Task Encoder

1. Learn a representation for the task.

2. If we do not know anything about the relation between different tasks, a common choice is
to represent the tasks with a one-hot vector.

3. An embedding layer (followed by feed-forward networks) can be used to encode the task.

Sharing Parameters

Policy and a task encoder

Sharing Parameters

Policy and a task encoder

(state, task 1)

Sharing Parameters

Policy and a task encoder

task 1

state

Sharing Parameters

task 1

state

Policy and a task encoder

Sharing Parameters

(state, task 1)

Policy with task specific heads and a task encoder

Sharing Parameters

task 1

state

Policy with task specific heads and a task encoder

Sharing Parameters

Policy and shared encoder and a task encoder

Sharing Parameters
Some components are task specific, some are shared and they are arranged in different ways.

Sharing Parameters
Some components are task specific, some are shared. Components can be arranged in different ways.

Sharing Parameters
Some components are task specific, some are shared. Components can be arranged in different ways.

Sharing Parameters
Some components are task specific, some are shared. Components can be arranged in different ways.

Sharing Parameters

One policy per task Task specific exploration bonus

Limitations: Negative Interference

Limitations: Negative Interference
Single Task

Limitations: Negative Interference
Single Task

Limitations: Negative Interference
Single Task

Limitations: Negative Interference
Single Task

Limitations: Negative Interference
Single Task

Limitations: Negative Interference
Single Task

Limitations: Negative Interference
Single Task Multi Task

Limitations: Negative Interference
Single Task Multi Task

Limitations: Negative Interference
Single Task Multi Task

Limitations: Negative Interference
Single Task Multi Task

Limitations: Negative Interference
Single Task Multi Task

Limitations: Negative Interference

Task 1

Task 2

Task 1

Task 2

Conflicting Gradients

Gradient Surgery for Multi-Task Learning

Task 1

Task 2 Non-conflicting
projection of gradient

Task 1

Task 2 Non-conflicting
projection of gradient

[9]: [2001.06782] Gradient Surgery for Multi-Task Learning

https://arxiv.org/abs/2001.06782

Limitations: Loss Balancing
● Not all tasks are equal - some are easy and some are hard.

● The scale of loss for different tasks could be different.

● One task (or a subset of tasks) can dominate training, thus hindering
learning on the other tasks.

● We want to train the different tasks at similar rate.

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

https://arxiv.org/abs/1711.02257

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Task Index

https://arxiv.org/abs/1711.02257

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Weight for the loss from the ith task
(Hyperparameter)

https://arxiv.org/abs/1711.02257

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Loss from the ith task

https://arxiv.org/abs/1711.02257

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Multitask Learning Loss

https://arxiv.org/abs/1711.02257

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Hyperparameter

Learned

https://arxiv.org/abs/1711.02257

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

L2 norm of the gradient for the ith task

https://arxiv.org/abs/1711.02257

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Mean of the L2 norms

https://arxiv.org/abs/1711.02257

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Relates to the
learning rate of ith
task

https://arxiv.org/abs/1711.02257

Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

hyperparameter

https://arxiv.org/abs/1711.02257

What we have seen so far
1. Recipes to train an agent on n-tasks.

What we have seen so far
1. Recipes to train an agent on n-tasks.

2. What if we want the agent to perform well on an “unseen” (or new) task?

a. For example, we train an autonomous car on concrete roads and gravel roads and now
we want to see how well it runs on an ice road.

b. We may have very little data/resources to train on the new task (“few-shot generalization”)
or no data/resources at all for the new task (“zero-shot generalization”).

What we have seen so far
1. What if we want to the agent to perform well on an “unseen” (or new)

task?

a. For example, we train an autonomous car on concrete roads and gravel roads and now
we want to see how well it runs on an ice road.

b. Approaches where we have task specific components (like encoders/policy heads etc) can
not be used.

c. Approaches like Distral, PCGrad etc could be used (in theory) but may not work well in
practice.

What we have seen so far
1. What if we want to the agent to perform well on an “unseen” (or new)

task?

a. We need to make additional assumptions about the tasks.

b. For example, in the car example, we could argue that the dynamics of the car on different
surfaces are related (though not the same).

c. This seems to be a valid (and useful) assumption even if we do not care about the unseen
surfaces.

Case III - State & action spaces are shared and transition
dynamics are related
● Driving a car on different surfaces - concrete, gravel roads, wet,

snow-covered etc

● Hidden-Parameter MDP [10]

Hidden Parameter MDP
1. We have n-tasks.

2. Each task maps to a MDP.

3. With n-tasks, we have n MDPs.

Hidden Parameter MDP
1. We have n-tasks.

2. Each task maps to a MDP.

3. With n-tasks, we have n MDPs.

4. These n MDPs can be viewed as
a single HiP-MDP with Θ as
the hidden-parameter.

Learning Robust State Abstractions for Hidden-Parameter
Block MDPs

Taken from [11]: [2007.07206] Learning Robust State Abstractions for Hidden-Parameter Block MDPs

https://arxiv.org/abs/2007.07206

Learning Robust State Abstractions for Hidden-Parameter
Block MDPs

Taken from [11]: [2007.07206] Learning Robust State Abstractions for Hidden-Parameter Block MDPs

https://arxiv.org/abs/2007.07206

Learning Robust State Abstractions for Hidden-Parameter
Block MDPs

Taken from [11]: [2007.07206] Learning Robust State Abstractions for Hidden-Parameter Block MDPs

https://arxiv.org/abs/2007.07206

Case IV - State & action spaces are shared and common
objects across tasks
● A robotic arm manipulating objects.

● The same arm is used across all the tasks, while the objects can be
shared/different across the tasks.

Image taken from [12]: [1910.10897] Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning

https://arxiv.org/abs/1910.10897

Case IV - State & action spaces are shared and common
objects across tasks
● The same arm is used across all the tasks, while the objects can be

shared/different across the tasks.

● Useful to share parameters across the different tasks.

Multi-Task Reinforcement Learning with Soft Modularization

[13]: [2003.13661] Multi-Task Reinforcement Learning with Soft Modularization

1. We have a collection of
modules.

2. When a task is
encountered, some of
these modules are
selected and combined
on the fly to instantiate
the policy.

3. The policy is thus
conditioned on the task
representation.

https://arxiv.org/abs/2003.13661

Multi-Task Reinforcement Learning with Soft Modularization

[13]: [2003.13661] Multi-Task Reinforcement Learning with Soft Modularization

https://arxiv.org/abs/2003.13661

Multi-Task Reinforcement Learning with Soft Modularization

[13]: [2003.13661] Multi-Task Reinforcement Learning with Soft Modularization

https://arxiv.org/abs/2003.13661

Multi-Task Reinforcement Learning with Soft Modularization

[13]: [2003.13661] Multi-Task Reinforcement Learning with Soft Modularization

state

https://arxiv.org/abs/2003.13661

Multi-Task Reinforcement Learning with Soft Modularization

Image taken from [13]: [2003.13661] Multi-Task Reinforcement Learning with Soft Modularization

● I explained the idea using
hard selection of modules.

● In practice, the method uses
soft modularization.

https://arxiv.org/abs/2003.13661

Case V - State & action spaces are shared and task
metadata is available
● We have some additional side information or metadata (which is not

required to solve the task).

● However, this side information can be used to infer relationship between
tasks.

Image taken from [12]: [1910.10897] Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning

https://arxiv.org/abs/1910.10897

Multi-Task Reinforcement Learning with Context-based
Representations

Image taken from [14]: [2102.06177] Multi-Task Reinforcement Learning with Context-based Representations

https://arxiv.org/abs/2102.06177

Multi-Task Reinforcement Learning with Context-based
Representations

Image taken from [14]: [2102.06177] Multi-Task Reinforcement Learning with Context-based Representations

https://arxiv.org/abs/2102.06177

Multi-Task Reinforcement Learning with Context-based
Representations

Image taken from [14]: [2102.06177] Multi-Task Reinforcement Learning with Context-based Representations

https://arxiv.org/abs/2102.06177

Multi-Task Reinforcement Learning with Context-based
Representations

Image taken from [14]: [2102.06177] Multi-Task Reinforcement Learning with Context-based Representations

https://arxiv.org/abs/2102.06177

Multi-Task Reinforcement Learning with Context-based
Representations

Image taken from [14]: [2102.06177] Multi-Task Reinforcement Learning with Context-based Representations

https://arxiv.org/abs/2102.06177

Multi-Task Reinforcement Learning with Context-based
Representations

Image taken from [14]: [2102.06177] Multi-Task Reinforcement Learning with Context-based Representations

https://arxiv.org/abs/2102.06177

Recap
● Case I: No relation between tasks.

● Case II: State and action spaces are shared.

○ Sharing knowledge via distillation.

○ Sharing parameters.

○ Can lead to negative interference.

○ Can lead to loss imbalance

Recap
● Case III: State & action spaces are shared and transition dynamics are

related.

● Case IV: State & action spaces are shared and common objects across
tasks

● Case V: State & action spaces are shared and task metadata is available.

Disclaimer Again
● This is not an exhaustive literature survey on multi task RL.

● We will look at some research papers and setups but there are a lot of
other important works.

● The focus will be on providing the motivation/intuition behind the
different setups.

● Did not discuss many interesting and related topics: Hierarchical
Reinforcement Learning, Curriculum Learning, Meta Learning, etc

Environments for Multi-task Reinforcement Learning
1. Metaworld: An open

source robotics
benchmark for
meta- and multi-task
reinforcement learning

Image taken from [12]: [1910.10897] Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://arxiv.org/abs/1910.10897

Environments for Multi-task Reinforcement Learning
1. Variations of single

task RL environments:

a. GridWorld, Mazes

Image taken from [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175

Environments for Multi-task Reinforcement Learning
1. Variations of single

task RL environments:

a. GridWorld, Mazes

b. Mujoco environments

Image taken from [2007.07206] Learning Robust State Abstractions for Hidden-Parameter Block MDPs

https://arxiv.org/abs/2007.07206

Environments for Multi-task Reinforcement Learning
1. MTEnv: MultiTask Environments for Reinforcement Learning

a. Collection of multi-task environments, including wrapper for some existing multi-task
environments, like MetaWorld.

b. Makes it easy to create multi-task environments from single task environments.

https://github.com/facebookresearch/mtenv

Environments for Multi-task Reinforcement Learning
1. Metaworld: An open source robotics benchmark for meta- and multi-task

reinforcement learning

2. Variations of single task RL environments

3. MTEnv: MultiTask Environments for Reinforcement Learning

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/facebookresearch/mtenv

Startup code for Multi-task Reinforcement Learning
1. Plenty of useful repositories for single task RL

a. Spinning Up in Deep RL!
b. PFRL: a PyTorch-based deep reinforcement learning library
c. RLlib: Scalable Reinforcement Learning

2. MTRL: Multi Task RL Baselines

3. garage: A toolkit for reproducible reinforcement learning research.

https://spinningup.openai.com/en/latest/index.html
https://github.com/pfnet/pfrl
https://docs.ray.io/en/latest/rllib.html
https://github.com/facebookresearch/mtrl
https://github.com/rlworkgroup/garage

Where do I go from here?
Single Task Reinforcement Learning

● ShangtongZhang/reinforcement-learning-an-introduction: Python Implementation of Reinforcement
Learning: An Introduction

● Welcome to Spinning Up in Deep RL! — Spinning Up documentation

● pfnet/pfrl: PFRL: a PyTorch-based deep reinforcement learning library

● tensorflow/agents: TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual
Bandits and Reinforcement Learning.

● RLlib: Scalable Reinforcement Learning

● thu-ml/tianshou: An elegant PyTorch deep reinforcement learning platform.

● rlworkgroup/garage: A toolkit for reproducible reinforcement learning research.

https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
https://spinningup.openai.com/en/latest/index.html
https://github.com/pfnet/pfrl
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://docs.ray.io/en/latest/rllib.html
https://github.com/thu-ml/tianshou
https://github.com/rlworkgroup/garage

Where do I go from here?
Multi Task Reinforcement Learning

● rlworkgroup/metaworld: An open source robotics benchmark for meta- and multi-task reinforcement
learning

● facebookresearch/mtenv: MultiTask Environments for Reinforcement Learning.

● facebookresearch/mtrl: Multi Task RL Baselines

● rlworkgroup/garage: A toolkit for reproducible reinforcement learning research.

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/facebookresearch/mtenv
https://github.com/facebookresearch/mtrl
https://github.com/rlworkgroup/garage

Acknowledgement
● Olivier Delalleau

● Sanket Mehta

● Amy Zhang

● Khimya Khetarpal

● Joelle Pineau

Thank you

@shagunsodhani
Facebook AI Research

References
[1]: Alexa Prize Socialbot Grand Challenge 4

[2]: How Customer Service Chatbots Are Redefining Support w/ AI [2019]

[3]: [2004.13637] Recipes for building an open-domain chatbot

[4]: Sutton & Barto Book: Reinforcement Learning: An Introduction

[5]: [1707.04175] Distral: Robust Multitask Reinforcement Learning

[6]: [1810.04650] Multi-Task Learning as Multi-Objective Optimization

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

[8]: [1812.02224] Adapting Auxiliary Losses Using Gradient Similarity

https://developer.amazon.com/alexaprize
https://www.intercom.com/blog/customer-service-chatbots/
https://arxiv.org/abs/2004.13637
http://incompleteideas.net/book/the-book.html
https://arxiv.org/abs/1707.04175
https://arxiv.org/abs/1810.04650
https://arxiv.org/abs/1711.02257
https://arxiv.org/abs/1812.02224

References
[9]: [2001.06782] Gradient Surgery for Multi-Task Learning

[10]: [1308.3513] Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for
Discovering Latent Task Parametrizations

[11]: [2007.07206] Learning Robust State Abstractions for Hidden-Parameter Block MDPs

[12]: [1910.10897] Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning

[13]: [2003.13661] Multi-Task Reinforcement Learning with Soft Modularization

[14]: [2102.06177] Multi-Task Reinforcement Learning with Context-based Representations

https://arxiv.org/abs/2001.06782
https://arxiv.org/abs/1308.3513
https://arxiv.org/abs/1308.3513
https://arxiv.org/abs/2007.07206
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/2003.13661
https://arxiv.org/abs/2102.06177

