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Who am I?
● Research Engineer at Facebook AI Research

● Interested in Lifelong Reinforcement Learning

○ Training AI systems that can interact with and learn from the physical world and consistently 
improve as they do so without forgetting the previous knowledge

● Also work on distributed optimization, generalization etc



Agenda
● Overview of (Single Task) Reinforcement Learning

○ What is reinforcement learning using the example of chatbots

○ Components - agent, environment, state-space, action-space, MDP, etc

○ Goal is set a common terminology

○ If you are well-versed in (single task) RL, feel free to jump ahead :)



Agenda
● Overview of (Single Task) Reinforcement Learning

● Introduce Multi Task Reinforcement Learning

○ Start with a general setup

○ Show some common building blocks / techniques for multi task RL

○ Add assumptions to the general setup and discuss how these assumptions lead to 
different setups and how they influence the model architecture.



What is not on the Agenda
● Standard RL algorithms like policy gradients etc.

● Implementation details.

● Detailed discussion on specific papers.

● I would be overloading the notation at some places, to focus more on the 
intuition. 



Disclaimer
● This is not an exhaustive literature survey on multi task RL.

● We will look at some research papers and setups but there are a lot of 
other important works.

● The focus will be on providing the motivation/intuition behind the 
different setups.



Reinforcement Learning



Chatbot Example

● We want to develop a chatbot (aka 
conversational agent) that can

○ engage humans in a 
conversation [1]

○ improve user experience by 
answering their questions [2] 

[1]: https://developer.amazon.com/alexaprize/

[2]: https://www.intercom.com/blog/customer-service-chatbots/

Image by mohamed Hassan from Pixabay

https://pixabay.com/users/mohamed_hassan-5229782
https://pixabay.com/


Chatbot Example
Alice: Hi

Alice: I enjoy hard rock.

Alice: Led Zeppelin is one of my favorites too! 
Also Pink Floyd.

[3]: [2004.13637] Recipes for building an open-domain chatbot

Bot: What kind of music do you like? I like all 
kinds of music but country is my favorite.

Bot: Thats cool. Do you have a favorite band? 
Mine is led zeppelin.

Bot: I like them too. My favorite album of 
theirs is dark side of the moon.
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Chatbot Example                                     Agent’s view
...

Alice: I enjoy hard rock.

Bot: Thats cool. Do you have a favorite band? 
Mine is led zeppelin.

Alice: Led Zeppelin is one of my favorites too! 
Also Pink Floyd.

[3]: [2004.13637] Recipes for building an open-domain chatbot
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Inputs: state of a conversation



Sequential Decision Making

s1

a1
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a2

s3 s4
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Action: chatbot’s dialog in a conversation



Solving a Sequential Decision Making Problem
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Solving a Sequential Decision Making Problem - I
We know the “right” predictions.
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Solving a Sequential Decision Making Problem - I

s1

a1

s2

a2

s3 s4

a3Predictions

Inputs

A1 A2 A3Target
Minimize the difference 
between the correct and 
the predicted decisions

We know the “right” predictions. We can use supervised learning.



Chatbot Example
Alice: Hi

Bot: What kind of music do you like? I like all 
kinds of music but country is my favorite.
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Chatbot Example
Alice: Hi

Bot: What kind of music do you like? I like all 
kinds of music but country is my favorite.

Bot: Do you like the weather these days? I find 
it a little too windy.

a1

s1

b1 This alternate dialog is not 
necessarily “wrong” if the goal 
is to have an engaging 
conversation.



Which sequence is better?

s1

a1

s2

a2

s3 s4

a3

s1

b1

u2

b2

u3 u4

b3

Which is the more engaging conversation?

Maybe we can ask the users to provide a rating at the end of the conversation.



Solving a Sequential Decision Making Problem - II
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Inputs

We do not know the “right” predictions. But we have a sense of “goodness” of our predictions.



Solving a Sequential Decision Making Problem - II

s1

a1

s2

a2

s3 s4

a3Predictions

Inputs

We do not know the “right” predictions. But we have a sense of “goodness” of our predictions.  We can 
use Reinforcement Learning.



Characteristics of Reinforcement Learning
1. Map input to some action.
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Observe -> Interact -> Observe -> Interact ...



Sequential Decision Making

s1

a1

s2

a2

s3 s4

a3 Agent

Environment

interactobserve

Observe -> Interact -> Observe -> Interact ...



Reinforcement Learning

Agent

The learner (eg chatbot)



Reinforcement Learning

Agent

Environment

Everything outside the agent
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Characteristics of Reinforcement Learning
1. Map input to some action.

2. Objective is to maximize a reward signal (rating in the previous example).

3. Trial and error approach - the optimal action is not known, but has to be 
discovered by interaction.

4. Delayed rewards - current action could affect all subsequent rewards.
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Reinforcement Learning

Agentstate (s) action (a)

policy



Reinforcement Learning

Agentstate (s) action (a)

Policy: Function that maps input to some action



Characteristics of Reinforcement Learning
1. Map input to some action.

2. Objective is to maximize a reward signal (rating in the previous example).

3. Trial and error approach - the optimal action is not known, but has to be 
discovered by interaction.

4. Delayed rewards - current action could affect all subsequent rewards.

[4]: Sutton & Barto Book: Reinforcement Learning: An Introduction

http://incompleteideas.net/book/the-book.html


Reinforcement Learning

Agent

Environment

state (s) action (a)

reward (r)



Reinforcement Learning

● Fineprint: We want to maximize the expected discounted reward and not just the immediate 
reward.

● “discounted” means that immediate rewards are more valuable than rewards that are far off.

● For example, 100 $ today are more valuable than 100$ in the future.
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Reinforcement Learning

Agent
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state (st) action (at)

reward (rt)

s0      a0      s1      r1       a1      s2      r2
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Mathematically

Agent

Environment

state (st) action (at)

reward (rt)

● State space - set of all possible states.

● Action space - set of all possible actions.

● Reward function - how much reward 
does the agent get in state s when it 
takes action a 

○ rt = R(st, at)

● Transition function - what is the next 
state when the agent takes action a in 
state s

○ st+1 = T(st, at)

Markov Decision Process (MDP) - Formalization of sequential decision making process
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In Practice

Agent

Environment

state (st) action (at)

reward (rt)

● Encoder: maps the environment’s 
observation/state to a vector.

● Policy: map the vector to action.

● Value functions: how good a state (or 
state-action pair) is.

● Reward function (that we learn): predict 
the reward for a state-action pair.

● Transition function (that we learn): 
predict the next state, given the current 
state-action pair.

● Replay buffer: if using off-policy learning

…...



So far
● We have seen the different components for a single-task RL problem.

● We intentionally did not discuss any RL algorithms (e.g. policy gradients).

● We assume we have access to an algorithm that can learn the policy.

● We will now look at different multi-task RL setups.



Multi-task Reinforcement Learning
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Multi-task Reinforcement Learning

● We have n RL tasks to learn.

● Each task has its own environment, state space, action space, reward function, transition 
dynamics, etc.

● This is the most general case of multi-task RL where we do not make any assumptions.
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What do we care about

● We have the performance on n tasks (say R1, R2, … Rn) :

○ Average Performance - Average(R1, R2, … Rn)

○ Median Performance - Median(R1, R2, … Rn)

○ Worst Performance -  Min(R1, R2, … Rn)



Case I

● Each task has its own environment, state space, action space, reward function, transition 
dynamics, etc.

● There is nothing common between the tasks. So there is no knowledge to share across the 
tasks.

● The best we can do is to learn n agents, each trained for one task.

● Given a task, we lookup the agent for that task and we use that agent to solve the task.



Case I

One policy per task One agent per task



Case II - Shared state and action space

● Examples - Navigation, locomotion, interacting with objects

● The only multi-task algorithm we know so far is: one-agent-per-task. So we start with that.

● When training the n agents, we want to share knowledge between them.

● Distral [5] provides an effective mechanism for doing that.

[5]: [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175
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Distral: Robust Multitask Reinforcement Learning

Image taken from [1707.04175] Distral: Robust Multitask Reinforcement Learning

 

https://arxiv.org/abs/1707.04175


Case II - Shared state and action space

● Distral [5] shares knowledge via distillation.

● Knowledge can also be shared by sharing parameters.

[5]: [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175
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Sharing Parameters

Task specific policy heads

(state, task 1)

action



Sharing Parameters

One agent per task



Sharing Parameters

One agent per task Task specific policy heads and encoders



Sharing Parameters

One agent per task Task specific policy heads and 
shared encoders



Sharing Parameters

Task Encoder

1. Learn a representation for the task.

2. If we do not know anything about the relation between different tasks, a common choice is 
to represent the tasks with a one-hot vector.

3. An embedding layer (followed by feed-forward networks) can be used to encode the task.



Sharing Parameters

Policy and a task encoder
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Sharing Parameters

Policy and a task encoder

task 1

state



Sharing Parameters

task 1

state

Policy and a task encoder



Sharing Parameters

(state, task 1)

Policy with task specific heads and a task encoder



Sharing Parameters

task 1

state

Policy with task specific heads and a task encoder



Sharing Parameters

Policy and shared encoder and a task encoder



Sharing Parameters
Some components are task specific, some are shared and they are arranged in different ways.
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Sharing Parameters
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Sharing Parameters
Some components are task specific, some are shared. Components can be arranged in different ways.



Sharing Parameters

One policy per task Task specific exploration bonus
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Limitations: Negative Interference

Task 1

Task 2

Task 1

Task 2

Conflicting Gradients



Gradient Surgery for Multi-Task Learning 

Task 1

Task 2 Non-conflicting 
projection of gradient

Task 1

Task 2 Non-conflicting 
projection of gradient

[9]: [2001.06782] Gradient Surgery for Multi-Task Learning

https://arxiv.org/abs/2001.06782


Limitations: Loss Balancing
● Not all tasks are equal - some are easy and some are hard.

● The scale of loss for different tasks could be different.

● One task (or a subset of tasks) can dominate training, thus hindering 
learning on the other tasks.

● We want to train the different tasks at similar rate.



Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

https://arxiv.org/abs/1711.02257


Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Task Index

https://arxiv.org/abs/1711.02257


Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Weight for the loss from the ith task 
(Hyperparameter)

https://arxiv.org/abs/1711.02257


Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Loss from the ith task

https://arxiv.org/abs/1711.02257


Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Multitask Learning Loss

https://arxiv.org/abs/1711.02257


Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Hyperparameter

Learned

https://arxiv.org/abs/1711.02257


Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

L2 norm of the gradient for the ith task

https://arxiv.org/abs/1711.02257


Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Mean of the L2 norms

https://arxiv.org/abs/1711.02257


Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Relates to the 
learning rate of ith 
task

https://arxiv.org/abs/1711.02257


Gradient Normalization for Adaptive Loss Balancing

[7]: [1711.02257] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

hyperparameter

https://arxiv.org/abs/1711.02257
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a. For example, we train an autonomous car on concrete roads and gravel roads and now 
we want to see how well it runs on an ice road.

b. We may have very little data/resources to train on the new task (“few-shot generalization”) 
or no data/resources at all for the new task (“zero-shot generalization”).



What we have seen so far
1. What if we want to the agent to perform well on an “unseen” (or new) 

task?

a. For example, we train an autonomous car on concrete roads and gravel roads and now 
we want to see how well it runs on an ice road.

b. Approaches where we have task specific components (like encoders/policy heads etc) can 
not be used.

c. Approaches like Distral, PCGrad etc could be used (in theory) but may not work well in 
practice.



What we have seen so far
1. What if we want to the agent to perform well on an “unseen” (or new) 

task?

a. We need to make additional assumptions about the tasks.

b. For example, in the car example, we could argue that the dynamics of the car on different 
surfaces are related (though not the same).

c. This seems to be a valid (and useful) assumption even if we do not care about the unseen 
surfaces.



Case III - State & action spaces are shared and transition 
dynamics are related
● Driving a car on different surfaces - concrete, gravel roads, wet, 

snow-covered etc

● Hidden-Parameter MDP [10]
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Hidden Parameter MDP
1. We have n-tasks.

2. Each task maps to a MDP.

3. With n-tasks, we have n MDPs.

4. These n MDPs can be viewed as
a single HiP-MDP with Θ as 
the hidden-parameter. 



Learning Robust State Abstractions for Hidden-Parameter 
Block MDPs

Taken from [11]: [2007.07206] Learning Robust State Abstractions for Hidden-Parameter Block MDPs

https://arxiv.org/abs/2007.07206


Learning Robust State Abstractions for Hidden-Parameter 
Block MDPs

Taken from [11]: [2007.07206] Learning Robust State Abstractions for Hidden-Parameter Block MDPs

https://arxiv.org/abs/2007.07206


Learning Robust State Abstractions for Hidden-Parameter 
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Taken from [11]: [2007.07206] Learning Robust State Abstractions for Hidden-Parameter Block MDPs

https://arxiv.org/abs/2007.07206


Case IV - State & action spaces are shared and common 
objects across tasks
● A robotic arm manipulating objects.

● The same arm is used across all the tasks, while the objects can be 
shared/different across the tasks.

Image taken from [12]: [1910.10897] Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning

https://arxiv.org/abs/1910.10897


Case IV - State & action spaces are shared and common 
objects across tasks
● The same arm is used across all the tasks, while the objects can be 

shared/different across the tasks.

● Useful to share parameters across the different tasks.



Multi-Task Reinforcement Learning with Soft Modularization

[13]: [2003.13661] Multi-Task Reinforcement Learning with Soft Modularization

1. We have a collection of 
modules.

2. When a task is 
encountered, some of 
these modules are 
selected and combined 
on the fly to instantiate 
the policy.

3. The policy is thus 
conditioned on the task 
representation.

https://arxiv.org/abs/2003.13661
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Multi-Task Reinforcement Learning with Soft Modularization

[13]: [2003.13661] Multi-Task Reinforcement Learning with Soft Modularization

state

https://arxiv.org/abs/2003.13661


Multi-Task Reinforcement Learning with Soft Modularization

Image taken from [13]: [2003.13661] Multi-Task Reinforcement Learning with Soft Modularization

● I explained the idea using 
hard selection of modules.

● In practice, the method uses 
soft modularization.

https://arxiv.org/abs/2003.13661


Case V - State & action spaces are shared and task 
metadata is available
● We have some additional side information or metadata (which is not 

required to solve the task).

● However, this side information can be used to infer relationship between 
tasks.

Image taken from [12]: [1910.10897] Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning

https://arxiv.org/abs/1910.10897


Multi-Task Reinforcement Learning with Context-based 
Representations

Image taken from [14]: [2102.06177] Multi-Task Reinforcement Learning with Context-based Representations

https://arxiv.org/abs/2102.06177
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Multi-Task Reinforcement Learning with Context-based 
Representations

Image taken from [14]: [2102.06177] Multi-Task Reinforcement Learning with Context-based Representations

https://arxiv.org/abs/2102.06177


Recap
● Case I: No relation between tasks.

● Case II: State and action spaces are shared.

○ Sharing knowledge via distillation.

○ Sharing parameters.

○ Can lead to negative interference.

○ Can lead to loss imbalance



Recap
● Case III: State & action spaces are shared and transition dynamics are 

related.

● Case IV: State & action spaces are shared and common objects across 
tasks

● Case V: State & action spaces are shared and task metadata is available.



Disclaimer Again
● This is not an exhaustive literature survey on multi task RL.

● We will look at some research papers and setups but there are a lot of 
other important works.

● The focus will be on providing the motivation/intuition behind the 
different setups.

● Did not discuss many interesting and related topics: Hierarchical 
Reinforcement Learning, Curriculum Learning, Meta Learning, etc



Environments for Multi-task Reinforcement Learning
1. Metaworld: An open 

source robotics 
benchmark for 
meta- and multi-task 
reinforcement learning

Image taken from [12]: [1910.10897] Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://arxiv.org/abs/1910.10897


Environments for Multi-task Reinforcement Learning
1. Variations of single 

task RL environments:

a. GridWorld, Mazes

Image taken from [1707.04175] Distral: Robust Multitask Reinforcement Learning

https://arxiv.org/abs/1707.04175


Environments for Multi-task Reinforcement Learning
1. Variations of single 

task RL environments:

a. GridWorld, Mazes

b. Mujoco environments

Image taken from [2007.07206] Learning Robust State Abstractions for Hidden-Parameter Block MDPs

https://arxiv.org/abs/2007.07206


Environments for Multi-task Reinforcement Learning
1. MTEnv: MultiTask Environments for Reinforcement Learning

a. Collection of multi-task environments, including wrapper for some existing multi-task 
environments, like MetaWorld.

b. Makes it easy to create multi-task environments from single task environments.

https://github.com/facebookresearch/mtenv


Environments for Multi-task Reinforcement Learning
1. Metaworld: An open source robotics benchmark for meta- and multi-task 

reinforcement learning

2. Variations of single task RL environments

3. MTEnv: MultiTask Environments for Reinforcement Learning

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/facebookresearch/mtenv


Startup code for Multi-task Reinforcement Learning
1. Plenty of useful repositories for single task RL

a. Spinning Up in Deep RL!
b. PFRL: a PyTorch-based deep reinforcement learning library
c. RLlib: Scalable Reinforcement Learning

2. MTRL: Multi Task RL Baselines

3. garage: A toolkit for reproducible reinforcement learning research.

https://spinningup.openai.com/en/latest/index.html
https://github.com/pfnet/pfrl
https://docs.ray.io/en/latest/rllib.html
https://github.com/facebookresearch/mtrl
https://github.com/rlworkgroup/garage


Where do I go from here?
Single Task Reinforcement Learning

● ShangtongZhang/reinforcement-learning-an-introduction: Python Implementation of Reinforcement 
Learning: An Introduction

● Welcome to Spinning Up in Deep RL! — Spinning Up documentation

● pfnet/pfrl: PFRL: a PyTorch-based deep reinforcement learning library

● tensorflow/agents: TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual 
Bandits and Reinforcement Learning.

● RLlib: Scalable Reinforcement Learning

● thu-ml/tianshou: An elegant PyTorch deep reinforcement learning platform.

● rlworkgroup/garage: A toolkit for reproducible reinforcement learning research.

 

https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
https://spinningup.openai.com/en/latest/index.html
https://github.com/pfnet/pfrl
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://docs.ray.io/en/latest/rllib.html
https://github.com/thu-ml/tianshou
https://github.com/rlworkgroup/garage


Where do I go from here?
Multi Task Reinforcement Learning

● rlworkgroup/metaworld: An open source robotics benchmark for meta- and multi-task reinforcement 
learning

● facebookresearch/mtenv: MultiTask Environments for Reinforcement Learning.

● facebookresearch/mtrl: Multi Task RL Baselines

● rlworkgroup/garage: A toolkit for reproducible reinforcement learning research.

 

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://github.com/facebookresearch/mtenv
https://github.com/facebookresearch/mtrl
https://github.com/rlworkgroup/garage
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