

Scaling Deep Learning Training with
FSDP in PyTorch

@shagunsodhaniODSC 2024

About Me

1. Tech Lead and Staff Research Engineer @ Meta AI

2. Focused on building AI agents that can:

a. interact with and learn from the physical world

b. consistently improve as they do so without forgetting the previous knowledge

Agenda

1. What is scaling and why care about it

a. Challenges in scaling deep learning models

2. Fully Sharded Data Parallelism (FSDP)

a. Overview

b. FSDP in action

What is scaling

Scaling - Training larger models on larger datasets using more compute

Scaling Hypothesis - Scaling improves performance across diverse tasks.

Strong Scaling Hypothesis - Easiest way to optimize for all the tasks & data

is to find a scalable architecture and simply train ever larger NNs [1]

Why care about scaling

Why care about scaling

Taken from Scaling Laws for Neural Language Models [2]

https://arxiv.org/abs/2001.08361

Challenges in scaling deep learning models

1. Data Availability and Quality

2. Compute Resource Requirements

3. Cost of Training and Deployment

4. Long Experimentation Cycles

5. Energy Consumption and Environmental Impact

6. Talent and Expertise Gaps

7. …

Challenges when training large models

1. Memory bottlenecks

a. Size of the model parameters + activations + optimizer state

2. Computation Efficiency

a. Parallelism overhead can reduce the expected speedups

3. Communication Overhead in Multi-Node Setups

a. Communication (e.g. for parameter update) limits scalability

Overview of FSDP

Fully Sharded Data Parallelism

Overview of FSDP

Fully Sharded Data Parallelism

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Step = 1

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Step = 1

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Step = 1

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Step = 1 Step = 2

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Model

Model

Step = 1 Step = 2

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Model

Model

Step = 1 Step = 2

Overview of FSDP

Fully Sharded Data Parallelism
Each GPU has a full copy of the model

Split the dataset in batches and each gpu processes a different batch

Easy to use via DistributedDataParallel

Bottlenecked on the size of the model (or activations or optimizer state)

Inefficient for large models or lot of gpus

https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html

Overview of FSDP

Fully Sharded Data Parallelism

Overview of FSDP

Fully Sharded Data Parallelism

Overview of FSDP

Fully Sharded Data Parallelism

Model

Overview of FSDP

Fully Sharded Data Parallelism

Model
Shard 1
Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Model
Shard 1
Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Model
Shard 1
Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Model
Shard 1
Shard 2

Grad
Shard 1
Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Model
Shard 1
Shard 2

Grad

Shard 1

Shard 2
Optim

Shard 1
Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

ModelModel

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1

Model

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1

Model

Shard 1

Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1

Model

Shard 1

Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1

Model

Shard 1

Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1 Step = 2

Model

Shard 1

Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1 Step = 2

Model

Shard 1

Shard 2

Shard 1

Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1 Step = 2

Model

Shard 1

Shard 2

Shard 1

Shard 2

Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1 Step = 2

Model

Shard 1

Shard 2

Shard 1

Shard 2

Overview of FSDP

Overview of FSDP

Overview of FSDP

Overview of FSDP

Overview of FSDP

Overview of FSDP

Overview of FSDP

Overview of FSDP

Overview of FSDP

Overview of FSDP

Fully Sharded Data Parallelism
Each GPU has a shard of the model (gradient and the optimizer state).

Split the dataset in batches and each gpu processes a different batch

Easy to use via FullyShardedDataParallel but less intuitive than DistributedDataParallel

Memory efficient but introduces more communication

https://pytorch.org/docs/stable/fsdp.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html

FSDP in action

FSDP in action

FSDP in action

FSDP in action

1. Constructor
a. Shard model parameters and each rank only keeps its own shard

FSDP in action

1. Constructor
a. Shard model parameters and each rank only keeps its own shard

2. Forward Call
a. all_gather all shards from all ranks to recover the full parameter in current FSDP unit

b. Run forward computation

c. Discard parameter shards it has just collected

FSDP in action

1. Constructor
a. Shard model parameters and each rank only keeps its own shard

2. Forward Call
a. all_gather all shards from all ranks to recover the full parameter in current FSDP unit

b. Run forward computation

c. Discard parameter shards it has just collected

3. Backward call
a. all_gather all shards from all ranks to recover the full parameter in current FSDP unit

b. Run backward computation

c. Reduce_scatter (sync) gradients

d. Discard parameters

FSDP in action | What to shard

FULL_SHARD - Parameters, gradients, and optimizer states are sharded.

NO_SHARD - Nothing is shared - This is very similar for DDP

HYBRID_SHARD - Apply FULL_SHARD within a node, and replicate parameters across nodes.

FSDP in action | What to shard

FSDP in action | How to shard

Specify a policy for sharding layers

The policy can be based on the size (number of parameters) of the model or name of the model

This is very easy to get wrong

FSDP in action | How to shard

FSDP in action | How to shard

FSDP in action | How to shard

FSDP in action | How to shard

FSDP in action | How to shard

FSDP in action | How to shard

FSDP in action | How to shard

FSDP in action | How to shard

FSDP in action | CPU Offload

FSDP in action | CPU Offload = False

FSDP in action | CPU Offload = False

FSDP in action | CPU Offload = True

FSDP in action | CPU Offload = True

FSDP in action | Other Options

1. forward_prefetch

2. limit_all_gathers / rate limiter

3. mixed_precision

FSDP in action | Profiling

1. Standard Pytorch profiling techniques apply [5, 6]

2. Look out for

a. time spent in sharding or unsharding parameters during
forward and backward passes.

b. How often and how long all-gather operations take to
complete, especially across multiple nodes.

FSDP in action | Common Pitfalls

1. Ensure consistent initialization using say sync_module_states

2. Use backward_prefetch, forward_prefetch and limit_all_gathers to reduce
network latency

3. Use cpu_offload, mixed_precision and activation checkpointing to reduce
memory usage

4. Uneven GPU Loads due to uneven sharding of model

5. Checkpointing the models

https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html#model-checkpoint-saving-by-streaming-to-the-rank0-cpu

Next Step

1. Getting Started with FSDP — PyTorch Tutorials

2. Advanced Model Training with FSDP — PyTorch Tutorials

3. PyTorch FSDP Tutorials - YouTube

https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html
https://www.youtube.com/playlist?list=PL_lsbAsL_o2BT6aerEKgIoufVD_fodnuT

Beyond FSDP

1. FSDP2

2. Pipeline Parallel

3. Context Parallel

4. Tensor Parallel

https://github.com/pytorch/torchtitan/blob/main/docs/fsdp.md
https://pytorch.org/docs/stable/distributed.pipelining.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://pytorch.org/docs/stable/distributed.tensor.parallel.html

References

1. Strong Scaling Hypothesis

2. Scaling Laws for Neural Language Models

3. DeepSpeed

4. FSDP vs DeepSpeed

5. PyTorch Profiler — PyTorch Tutorials

6. torch.profiler — PyTorch 2.5 documentation

https://gwern.net/scaling-hypothesis#scaling-hypothesis
https://arxiv.org/abs/2001.08361
https://github.com/microsoft/DeepSpeed
https://huggingface.co/docs/accelerate/en/concept_guides/fsdp_and_deepspeed
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/docs/stable/profiler.html

Thank you!
https://shagunsodhani.com/talks/

@shagunsodhaniODSC 2024

https://shagunsodhani.com/talks/

