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About Me

1. Tech Lead and Staff Research Engineer @ Meta AI

2. Focused on building AI agents that can:

a. interact with and learn from the physical world

b. consistently improve as they do so without forgetting the previous knowledge 



Agenda

1. What is scaling and why care about it

a. Challenges in scaling deep learning models

2. Fully Sharded Data Parallelism (FSDP)

a. Overview

b. FSDP in action



What is scaling

Scaling - Training larger models on larger datasets using more compute

Scaling Hypothesis - Scaling improves performance across diverse tasks.

Strong Scaling Hypothesis -  Easiest way to optimize for all the tasks & data 

is to find a scalable architecture  and simply train ever larger NNs [1]
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Why care about scaling

Taken from Scaling Laws for Neural Language Models [2]

https://arxiv.org/abs/2001.08361


Challenges in scaling deep learning models

1. Data Availability and Quality

2. Compute Resource Requirements

3. Cost of Training and Deployment

4. Long Experimentation Cycles

5. Energy Consumption and Environmental Impact

6. Talent and Expertise Gaps

7. …



Challenges when training large models

1. Memory bottlenecks

a. Size of the model parameters + activations + optimizer state

2. Computation Efficiency

a. Parallelism overhead can reduce the  expected speedups

3. Communication Overhead in Multi-Node Setups

a. Communication (e.g. for parameter update) limits scalability



Overview of FSDP

Fully Sharded Data Parallelism



Overview of FSDP

Fully Sharded Data Parallelism



Overview of FSDP

Fully Sharded Data Parallelism

Dataset



Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model



Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model

Step = 1



Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Step = 1



Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Step = 1



Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Step = 1



Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Step = 1 Step = 2



Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Model

Model

Step = 1 Step = 2



Overview of FSDP

Fully Sharded Data Parallelism

Dataset

Model
Model

Model

Model

Model

Step = 1 Step = 2



Overview of FSDP

Fully Sharded Data Parallelism
Each GPU has a full copy of the model

Split the dataset in batches and each gpu processes a different batch

Easy to use via  DistributedDataParallel

Bottlenecked on the size of the model (or activations or optimizer state)

Inefficient for large models or lot of gpus

https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
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Overview of FSDP

Fully Sharded Data Parallelism
Each GPU has a shard of the model (gradient and the optimizer state).

Split the dataset in batches and each gpu processes a different batch

Easy to use via  FullyShardedDataParallel but less intuitive than DistributedDataParallel

Memory efficient but introduces more communication

https://pytorch.org/docs/stable/fsdp.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
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FSDP in action

1. Constructor
a. Shard model parameters and each rank only keeps its own shard

2. Forward Call
a. all_gather all shards from all ranks to recover the full parameter in current FSDP unit

b. Run forward computation

c. Discard parameter shards it has just collected

3. Backward call
a. all_gather all shards from all ranks to recover the full parameter in current FSDP unit

b. Run backward computation

c. Reduce_scatter (sync) gradients

d. Discard parameters



FSDP in action | What to shard

FULL_SHARD - Parameters, gradients, and optimizer states are sharded. 

NO_SHARD - Nothing is shared - This is very similar for DDP

HYBRID_SHARD - Apply FULL_SHARD within a node, and replicate parameters across nodes. 
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FSDP in action | How to shard

Specify a policy for sharding layers

The policy can be based on the size (number of parameters) of the model or name of the model

This is very easy to get wrong
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FSDP in action | Other Options

1. forward_prefetch

2. limit_all_gathers / rate limiter

3. mixed_precision



FSDP in action | Profiling

1. Standard Pytorch profiling techniques apply [5, 6]

2. Look out for

a. time spent in sharding or unsharding parameters during 
forward and backward passes.

b. How often and how long all-gather operations take to 
complete, especially across multiple nodes.



FSDP in action | Common Pitfalls

1. Ensure consistent initialization using say sync_module_states

2. Use backward_prefetch, forward_prefetch and limit_all_gathers to reduce 
network latency

3. Use cpu_offload, mixed_precision and activation checkpointing to reduce 
memory usage

4. Uneven GPU Loads due to uneven sharding of model

5. Checkpointing the models

https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html#model-checkpoint-saving-by-streaming-to-the-rank0-cpu


Next Step

1. Getting Started with FSDP — PyTorch Tutorials 

2. Advanced Model Training with FSDP — PyTorch Tutorials 

 

3. PyTorch FSDP Tutorials - YouTube 

https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html
https://www.youtube.com/playlist?list=PL_lsbAsL_o2BT6aerEKgIoufVD_fodnuT


Beyond FSDP

1. FSDP2

2. Pipeline Parallel

3. Context Parallel

4. Tensor Parallel

https://github.com/pytorch/torchtitan/blob/main/docs/fsdp.md
https://pytorch.org/docs/stable/distributed.pipelining.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://pytorch.org/docs/stable/distributed.tensor.parallel.html
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Thank you! 
https://shagunsodhani.com/talks/

@shagunsodhaniODSC 2024

https://shagunsodhani.com/talks/

