
Profiling and Tuning PyTorch
Models
@shagunsodhani

Who am I

1. Research Engineer at Facebook AI Research

2. Focusing on lifelong learning and reinforcement learning

3. Using and talking about PyTorch for about 3 years now

What is PyTorch

PyTorch is a Python package that provides two high-level features:

1. Tensor computation (like NumPy) with strong GPU acceleration

2. Deep neural networks built on a tape-based autograd system

Note: This slide is based on PyTorch 1.9.1

PyTorch Profiling 101

Setup PyTorch Profiler

1. No new library needed as profiler is built in PyTorch

2. `from torch import profiler`

3. Further Reading

https://pytorch.org/docs/stable/profiler.html?highlight=profiler#module-torch.profiler

Setup PyTorch Profiler

1. No new library needed as profiler is built in PyTorch

2. `from torch import profiler`

3. Further Reading

https://pytorch.org/docs/stable/profiler.html?highlight=profiler#module-torch.profiler

Measure

1. No new library needed as profiler is built in PyTorch

2. `from torch import profiler`

3. Further Reading

https://pytorch.org/docs/stable/profiler.html?highlight=profiler#module-torch.profiler

Measure

1. No new library needed as profiler is built in PyTorch

2. `from torch import profiler`

3. Further Reading

https://pytorch.org/docs/stable/profiler.html?highlight=profiler#module-torch.profiler

Optimize the setup

1. No new library needed as profiler is built in PyTorch

2. `from torch import profiler`

3. Further Reading

https://pytorch.org/docs/stable/profiler.html?highlight=profiler#module-torch.profiler

Optimize the setup

1. No new library needed as profiler is built in PyTorch

2. `from torch import profiler`

3. Further Reading

https://pytorch.org/docs/stable/profiler.html?highlight=profiler#module-torch.profiler

Measure

1. No new library needed as profiler is built in PyTorch

2. `from torch import profiler`

3. Further Reading

https://pytorch.org/docs/stable/profiler.html?highlight=profiler#module-torch.profiler

Compare

1. No new library needed as profiler is built in PyTorch

2. `from torch import profiler`

3. Further Reading

https://pytorch.org/docs/stable/profiler.html?highlight=profiler#module-torch.profiler

Setup PyTorch Profiler with GPU

Measure

Measure

Measure

Setup PyTorch Profiler with GPU

Measure

Setup Profile Trace

Visualize

1. Go to chrome://tracing

2. Upload the trace

Some other useful things

1. Visualizing the data as flamegraphs

2. Using profiler to analyze long-running jobs

3. Using PyTorch profiler with Tensorboard

4. Using PyTorch profiler with VSCode

https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html#visualizing-data-as-a-flamegraph
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html#using-profiler-to-analyze-long-running-jobs
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
https://code.visualstudio.com/docs/datascience/pytorch-support#_pytorch-profiler-integration

Tuning PyTorch Models

Multi-process Data Loading

1. A dataloader uses single-process data loading by default.

2. Therefore, data loading may block computing.

3. Enable multi-process data loading by passing `num_workers=<some positive number>` when creating

the dataloader.

4. Further Reading

https://pytorch.org/docs/stable/data.html?highlight=#single-and-multi-process-data-loading

Memory Pinning

1. Host to GPU copies are much faster when they originate from pinned (page-locked) memory.

2. For data loading, passing `pin_memory=True` to dataloader constructor will put the fetched data

Tensors in pinned memory.

3. This will enable faster data transfer to CUDA-enabled GPUs.

4. Further Reading

https://pytorch.org/docs/stable/data.html?highlight=dataloader#memory-pinning

Inference Mode

1. Code run under this mode gets better performance by disabling view tracking and version counter

bumps.

2. Use it only when you are certain your operations will have no interactions with autograd

3. Further Reading

https://pytorch.org/docs/stable/generated/torch.inference_mode.html?highlight=inference%20mode

Set grad to None

1. Can pass an additional argument called `set_to_none` when calling optimizer.zero_grad()

2. This sets the grad to None (and not 0)

3. Leads to lower memory footprint and modestly faster performance.

4. Caveats apply!

5. Further Reading

https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html?highlight=zero_grad

Enable cuDNN auto-tuner

1. Set `torch.backends.cudnn.benchmark=True`

2. Causes cuDNN to benchmark multiple convolution algorithms and select the fastest.

3. Can make the results non-deterministic.

4. Further Reading

https://pytorch.org/docs/stable/backends.html?highlight=cudnn%20benchmark%20multiple%20convolution

Use DistributedDataParallel instead of DataParallel

1. DistributedDataParallel uses multiprocessing where a process is created for each GPU while

DataParallel uses multithreading.

2. By using multiprocessing, each GPU has its dedicated process.

3. This avoids the performance overhead caused by GIL of Python interpreter

4. Further Reading

https://pytorch.org/docs/stable/notes/cuda.html#cuda-nn-ddp-instead

Fuse point-wise operators

1. Use torch.jit to fuse point-wise operators into a single operator (kernel call)

2. Pointwise operations are memory-bound, for each operation PyTorch launches a separate kernel.

3. Fused operator launches only one kernel for multiple fused pointwise ops.

4. Further Reading

https://pytorch.org/docs/stable/jit.html

Use Fused Optimizers

1. Similar benefits as fusing PyTorch layers/operations.

2. Supported optimizers: FusedAdam, FusedLAMB, FusedNovoGrad, FusedSGD

3. Further Reading

https://nvidia.github.io/apex/optimizers.html

Checkpoint intermediate buffers

1. For the backward pass, store the inputs of a few layers and recomput others during the backward pass.

2. This reduces the memory requirements, and enables increasing the batch size.

3. Further Reading

https://pytorch.org/docs/stable/checkpoint.html

Avoid unnecessary CPU-GPU synchronization

1. Avoid operations that requires synchronization.

2. This includes:

A. print(cuda_tensor)
B. cuda_tensor.item()
C. cuda_tensor.cpu()
D. python control flow which depends on results of operations performed on cuda tensors e.g. if

(cuda_tensor != 0).all()

Use mixed precision and AMP

1. Mixed precision: some operations use the torch.float32 (float) datatype and other operations use

torch.float16 (half).

2. Some ops, like linear layers and convolutions, are much faster in float16.

3. Other ops, like reductions, often require the dynamic range of float32.

2. Further Reading

https://pytorch.org/docs/stable/amp.html

Thank you
@shagunsodhani

References

1. https://nvlabs.github.io/eccv2020-mixed-precision-tutorial/

2. PyTorch Performance Tuning Guide

3. https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

4. https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/

https://nvlabs.github.io/eccv2020-mixed-precision-tutorial/
https://nvlabs.github.io/eccv2020-mixed-precision-tutorial/files/szymon_migacz-pytorch-performance-tuning-guide.pdf
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html
https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/

