torch.func Functional Transforms in PyTorch

Toronto Machine Learning Summit 2024 @shagunsodhani

About Me

- 1. Tech Lead and Staff Research Engineer @ Meta Al
- 2. Training foundation models to develop adaptive neural interfaces

Agenda

- 1. Quick overview of PyTorch
- 2. Why torch.func
- 3. Overview of torch.func API
- 4. Where can you start using torch.func today
- 5. Gotachs to look out for
- 6. Questions and Answers

PyTorch

- 1. Open-source Machine Learning framework
- 2. Provides Numpy-like arrays with GPU acceleration
- 3. Enables training deep neural networks
- 4. Well-known for its ease of use

Following use cases are tricky to do in PyTorch

- 1. computing per-sample-gradients
- 2. running model ensembles on a single machine
- 3. efficiently batching together tasks in the inner-loop of MAML-like algorithms
- 4. efficiently computing Jacobians and Hessians (with or without batching)

These can be supported by introducing composable function transforms

Composable Function Transforms

Composable Function Transforms

1. Higher-order function that accepts functions are input and returns function as output.

Composable Function Transforms

- 1. Higher-order function that accepts functions are input and returns function as output.
- 2. Examples include auto-differentiation transforms, grad(f) that returns a function that computes the gradient of f or vectorization/batching transform, vmap(f) that returns a function that computes f over batches of inputs.

Composable Junction Transforms

These function transforms can compose with each other arbitrarily. For example, composing vmap(grad(f)) computes per-sample-gradients!

- In general, having "pure" functions makes it easier to compose them.
 a. Functions that always produce the same output for the same input and have no side effects
- 2. In PyTorch, commonly used constructs like modules are stateful.
- 3. torch.func makes it easier to embrace the functional programming style, which in-turn simplifies some workflows easier.

Given a function func that runs on a single example, we can lift it to a function that can take batches of examples with vmap(func)

vmap(func) adds a dimension to all tensor operations in func

It can be invoked as vmap(func)(*inputs)

- 1 x: torch.Tensor = torch.randn(100)
- 2 y: torch.Tensor = torch.randn(100)
- 3 $x_dot_y = torch.dot(x, y)$
- 4 print(f"{x_dot_y=}")

x_dot_y=tensor(-3.0892)

- 1 x: torch.Tensor = torch.randn(100)
- 2 y: torch.Tensor = torch.randn(100)
- 3 $x_dot_y = torch.dot(x, y)$
- 4 print(f"{x_dot_y=}")

x_dot_y=tensor(-3.0892)

- 1 x: torch.Tensor = torch.randn(10, 100)
- 2 y: torch.Tensor = torch.randn(10, 100)
- 3 $x_dot_y = torch.dot(x, y)$

- 1 batched_dot_product = torch.func.vmap(torch.dot)
- 2 x_dot_y_using_vmap = batched_dot_product(x, y)
- 3 print(f"{x_dot_y_using_vmap=}")

```
x_dot_y_using_vmap=tensor([ 8.2551, 13.3984, -11.282
-7.5680, -3.9727, -0.6121])
```


- 1 batched_dot_product = torch.func.vmap(torch.dot)
- 2 x_dot_y_using_vmap = batched_dot_product(x, y)
- 3 print(f"{x_dot_y_using_vmap=}")

```
x_dot_y_using_vmap=tensor([ 8.2551, 13.3984, -11.282
-7.5680, -3.9727, -0.6121])
```

1 assert torch.allclose(x_dot_y, x_dot_y_using_vmap)

API | grad

grad operator helps computing gradients of func.

This operator can be nested to compute higher-order gradients.

API | grad

- sin_x = lambda x: torch.sin(x)
- 2 grad_sin_x = torch.func.grad(sin_x)

4 assert torch.allclose(grad_sin_x(x), x.cos())

API | grad

1 grad_grad_sin_x = torch.func.grad(grad_sin_x)

2 assert torch.allclose(grad_grad_sin_x(x), -x.sin())

API | grad + vmap

When composed with vmap, grad can be used to compute per-sample-gradients:

5

6 7 8

9

10 11

API | grad + vmap

```
from torch.func import grad, vmap
```

```
batch_size, feature_size = 3, 5
```

```
def model(weights: torch.Tensor, feature_vec: torch.Tensor) -> torch.Tensor:
    return feature_vec.dot(weights).relu()
```

```
def compute_loss(weights: torch.Tensor, example: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
    y = model(weights, example)
    return ((y - target) ** 2).mean() # MSELoss'
```

```
12 weights = torch.randn(feature_size, requires_grad=True)
13 examples = torch.randn(batch_size, feature_size)
```

```
14 targets = torch.randn(batch_size)
```


API | grad + vmap

- 1 inputs = (weights, examples, targets)
- 2 grad_of_loss = grad(compute_loss)
- 3 grad_of_loss_per_sample = vmap(grad_of_loss, in_dims=(None, 0, 0))
 4
- 5 grad_weight_per_example = grad_of_loss_per_sample(*inputs)
- 6 print(grad_weight_per_example)

API [functional_call]

Performs a functional call on the module by replacing the module parameters and buffers with the provided ones.

3

4

5

6

7

8

API | functional_call

- 1 x = torch.randn(4, 3)
- 1 = torch.randn(4, 3)

$$model = nn.Linear(3, 3)$$

- params = dict(model.named_parameters())
- y = functional_call(model, params, x)
- 9 assert torch.allclose(y, model(x))

API | functional_call

1	<pre>def compute_loss(</pre>
2	<pre>params: dict[str, torch.Tensor], x: torch.Tensor, t: torch.Tensor</pre>
3) -> torch.Tensor:
4	<pre>y = functional_call(model, params, x)</pre>
5	<pre>return nn.functional.mse_loss(y, t)</pre>
6	
7	
8	grad_of_loss = grad(compute_loss)
9	grad_weights = grad_of_loss(<u>dict(</u> model.named_parameters()), x, t)

API [functional_call]

- 1 num_models = 5
- 2 batch_size = 64
- 3 in_features, out_features = 3, 3
- 4 models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
- 5 data = torch.randn(batch_size, 3)

API stack_module_state

1
2
3
4
5
6
7
8
9

```
def forward_call(params, buffers, data):
    return torch.func.functional_call(models[0], (params, buffers), data)
vmap_forward_call = vmap(forward_call, (0, 0, None))
params, buffers = torch.func.stack_module_state(models)
output = vmap_forward_call(params, buffers, data)
```

10 assert output.shape == (num_models, batch_size, out_features)

Other examples include

- vjp (vector jacobian product)
- jvp (jacobian vector product)
- hessian
- ...

API

Gotchas

Using PyTorch torch.no_grad together with grad.

Case 1: Using torch.no_grad inside a function:

Case 2: Using grad inside torch.no_grad context manager:

```
>>> with torch.no_grad():
>>> grad(f)(x)
In this case, grad will respect the inner torch.no_grad, but not the outer one.
This is because grad is a "function transform": its result should not depend on
the result of a context manager outside of f.
```


Gotchas

- 1. Functions with side-effects / global effects can be problematic
- 2. vmap does not work with some inplace operations
- 3. vmap does not work with some data dependent conditionals
- 4. <u>Batchnorm</u> requires special handling
- 5. For more gotachs, checkout <u>this</u>

Thank you!

https://shagunsodhani.com/talks/

Toronto Machine Learning Summit 2024 @shagunsodhani