torch.func Functional Transforms in PyTorch

Toronto Machine Learning @shagunsodhani Summit 2024

- 1. Tech Lead and Staff Research Engineer @ Meta AI
- 2. Training foundation models to develop adaptive neural interfaces

Agenda

- 1. Quick overview of PyTorch
- 2. Why torch.func
- 3. Overview of torch.func API
- 4. Where can you start using torch.func today
- 5. Gotachs to look out for
- 6. Questions and Answers

PyTorch

- 1. Open-source Machine Learning framework
- 2. Provides Numpy-like arrays with GPU acceleration
- 3. Enables training deep neural networks
- 4. Well-known for its ease of use

Following use cases are tricky to do in PyTorch

- 1. computing per-sample-gradients
- 2. running model ensembles on a single machine
- 3. efficiently batching together tasks in the inner-loop of MAML-like algorithms
- 4. efficiently computing Jacobians and Hessians (with or without batching)

These can be supported by introducing composable function transforms

Composable Function Transforms

Composable Function Transforms

1. Higher-order function that accepts functions are input and returns function as output.

Composable Function Transforms

- 1. Higher-order function that accepts functions are input and returns function as output.
- 2. Examples include auto-differentiation transforms, $\mathsf{grad}(f)$ that returns a function that computes the gradient of f or vectorization/batching transform, $vmap(f)$ that returns a function that computes f over batches of inputs.

Composable Function Transforms

These function transforms can compose with each other arbitrarily. For example, composing vmap (grad(f)) computes per-sample-gradients!

- 1. In general, having "pure" functions makes it easier to compose them. a. Functions that always produce the same output for the same input and have no side effects
- 2. In PyTorch, commonly used constructs like modules are stateful.
- 3. torch, func makes it easier to embrace the functional programming style, which in-turn simplifies some workflows easier.

API | vmap

Given a function func that runs on a single example, we can lift it to a function that can take batches of examples with $vmap(func)$

 $vmap(func)$ adds a dimension to all tensor operations in func

It can be invoked as vmap (func) (*inputs)

API | vmap

- x: torch. Tensor = torch. randn (100) $\mathbf{1}$
- 2° y: torch. Tensor = torch. randn (100)
- $\overline{3}$ $x_dot_y = torch.dot(x, y)$
- $\overline{4}$ $print(f''{x.dot_y}=\})$

x_dot_y=tensor(-3.0892)

API vmap

- $\mathbf{1}$ x: torch. Tensor = torch. randn (100)
- y: torch. Tensor = torch. randn (100) $\mathbf{2}$
- $\overline{3}$ $x_dot_y = torch.dot(x, y)$
- $\overline{4}$ $print(f''{x.dot_y}=\})$

 $x_dot_y = tensor(-3.0892)$

- x: torch. Tensor = torch. randn $(10, 100)$ 1
- $\overline{2}$ y: torch. Tensor = torch. randn $(10, 100)$
- $\overline{3}$ $x_dot_y = torch.dot(x, y)$

API Vmap

 $\mathbf{1}$ x: torch. Tensor = torch. randn $(10, 100)$ $\overline{2}$ y: torch. Tensor = torch. randn $(10, 100)$ $\overline{3}$ $x_dot_y = torch.ones(10)$ $\overline{4}$ for i in range $(x.shape[0])$: 5 $x_dot_y[i] = torch.dot(x[i], y[i])$ 6 $print(f''{x_dot_y}=\})$ x_dot_y=tensor([8.2551, 13.3984, -11.2821, $-7.5680, -3.9727, -0.6121)$

API Vmap

- $batched_dot_product = torch.func.vmap(torch.dot)$ 1
- $\overline{2}$ $x_dot_y_lusing_wap = batched_dot_product(x, y)$
- $\overline{3}$ $print(f''{x.dot_y_using_vmap=}")$

```
x_dot_y_using_vmap=tensor([ 8.2551, 13.3984, -11.282
        -7.5680, -3.9727, -0.6121]
```


API Vmap

- batched_dot_product = torch.func.vmap(torch.dot) 1
- $\overline{2}$ $x_dot_y_lusing_wap = batched_dot_product(x, y)$
- $\overline{3}$ $print(f''{x.dot_y_using_vmap=}")$

```
x_dot_y_using_vmap=tensor([ 8.2551, 13.3984, -11.282
        -7.5680, -3.9727, -0.6121]
```
 $\mathbf{1}$ assert torch.allclose(x_dot_y, x_dot_y_using_vmap)

API | grad

grad operator helps computing gradients of func .

This operator can be nested to compute higher-order gradients.

API grad

- $sin_x =$ lambda x: torch.sin(x) $\mathbf{1}$
- $\overline{2}$ $grad_sin_x = torch.func.grad(sin_x)$

$$
x = \text{torch.random}(\text{}
$$

assert torch.allclose(grad_sin_x(x), x.cos()) $\overline{4}$

API | grad

$grad_grad_sin_x = +b$ torch.func.grad(grad_sin_x) $\mathbf{1}$

 $\overline{2}$ assert torch.allclose(grad_grad_sin_x(x), -x.sin())

API | grad + vmap

When composed with vmap, grad can be used to compute per-sample-gradients:

5

6 $\overline{7}$ 8

9

10 11 12

13

14

API | grad + vmap

```
\frac{m}{2} computed grad can be used to compute the used of \frac{m}{2}batch_size, feature_size = 3, 5def model(weights: torch.Tensor, feature_vec: torch.Tensor) -> torch.Tensor:
     return feature_vec.dot(weights).relu()
def compute_loss(weights: torch.Tensor, example: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
     y = model(weights, example)return ((y - target) ** 2).mean() # MSELoss'
weights = torch.randn(feature_size, requires_grad=True)
examples = torch.randn(batch_size, feature_size)
targets = torch.random(batch_size)
```


API | grad + vmap

- $\mathbf{1}$ $inputs = (weights, examples, targets)$
- $\overline{2}$ $grad_of_loss = grad(compute_loss)$
- $\overline{3}$ $grad_of_loss_per_sample = vmap(grad_of_loss, in_dims=(None, 0, 0))$ $\overline{4}$
- 5 $grad_weight_per_example = grad_of_loss_per_sample(*inputs)$
- 6 print(grad_weight_per_example)

tensor($[[-0.0000, 0.0000, -0.0000, -0.0000, -0.0000]$, $[-0.0352, 0.0429, 0.0334, -0.0174, 0.0097]$ $[0.0000, -0.0000, -0.0000, 0.0000, -0.0000]$, qrad fn=<MulBackward0>)

API | functional_call

Performs a functional call on the module by replacing the module parameters and buffers with the provided ones.

3

4

5

6

 $\overline{7}$

8

API | functional_call

- $x =$ torch.randn $(4, 3)$ $\mathbf{1}$
- $\overline{2}$ $t =$ torch.randn $(4, 3)$

$$
model = nn.Linear(3, 3)
$$

- $params = dict(model.name_{parameters}()$
- $y = functional_{cal}(model, *params*, x)$
- 9 $assert$ torch.allclose(y, model(x))

API | functional_call

API | functional_call

- $num_models = 5$ $\mathbf{1}$
- $\overline{2}$ batch_size = 64
- 3 $in_{\text{features, out_features}} = 3, 3$
- models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)] $\overline{4}$
- 5 $data =$ torch.randn(batch_size, 3)

API | stack_module_state

10

Other examples include

- vjp (vector jacobian product)
- jvp (jacobian vector product)
- hessian
- …

Gotchas

Using PyTorch torch.no_grad together with grad.

Case 1: Using torch.no_grad inside a function:

```
\gg def f(x):
       with torch.no_grad():
>>>C = X ** 2
\gg\gg return x - cIn this case, grad(f)(x) will respect the inner torch.no_grad.
```
Case 2: Using grad inside torch.no_grad context manager:

```
>>> with torch.no_grad():
       grad(f)(x)\ggIn this case, grad will respect the inner torch.no_grad, but not the outer one.
This is because grad is a "function transform": its result should not depend on
the result of a context manager outside of f.
```


Gotchas

- 1. Functions with side-effects / global effects can be problematic
- 2. vmap does not work with some inplace operations
- 3. vmap does not work with some data dependent conditionals
- 4. [Batchnorm](https://pytorch.org/docs/stable/func.batch_norm.html) requires special handling
- 5. For more gotachs, checkout [this](https://pytorch.org/docs/stable/func.ux_limitations.html)

Thank you!

<https://shagunsodhani.com/talks/>

Toronto Machine Learning **Warehouse Controller and Toronto Machine** Summit 2024