
torch.func
Functional Transforms in PyTorch

@shagunsodhaniToronto Machine Learning
Summit 2024

About Me

1. Tech Lead and Staff Research Engineer @ Meta AI

2. Training foundation models to develop adaptive neural interfaces

Agenda

1. Quick overview of PyTorch

2. Why torch.func

3. Overview of torch.func API

4. Where can you start using torch.func today

5. Gotachs to look out for

6. Questions and Answers

PyTorch

1. Open-source Machine Learning framework

2. Provides Numpy-like arrays with GPU acceleration

3. Enables training deep neural networks

4. Well-known for its ease of use

Why torch.func

Following use cases are tricky to do in PyTorch

1. computing per-sample-gradients
2. running model ensembles on a single machine
3. efficiently batching together tasks in the inner-loop of MAML-like

algorithms
4. efficiently computing Jacobians and Hessians (with or without

batching)

These can be supported by introducing composable function transforms

Why torch.func

Composable Function Transforms

Why torch.func

Composable Function Transforms

1. Higher-order function that accepts functions are input and returns

function as output.

Why torch.func

Composable Function Transforms

1. Higher-order function that accepts functions are input and returns function as
output.

2. Examples include auto-differentiation transforms, grad(f) that returns a
function that computes the gradient of f or vectorization/batching transform,
vmap(f) that returns a function that computes f over batches of inputs.

Why torch.func

Composable Function Transforms

These function transforms can compose with each other arbitrarily. For

example, composing vmap(grad(f)) computes per-sample-gradients!

Why torch.func

1. In general, having "pure" functions makes it easier to compose them.

a. Functions that always produce the same output for the same

input and have no side effects

2. In PyTorch, commonly used constructs like modules are stateful.

3. torch.func makes it easier to embrace the functional

programming style, which in-turn simplifies some workflows easier.

API | vmap

Given a function func that runs on a single example, we can lift it to a

function that can take batches of examples with vmap(func)

vmap(func) adds a dimension to all tensor operations in func

It can be invoked as vmap(func)(*inputs)

API | vmap

API | vmap

API | vmap

API | vmap

API | vmap

API | grad

grad operator helps computing gradients of func .

This operator can be nested to compute higher-order gradients.

API | grad

API | grad

API | grad + vmap

When composed with vmap, grad can be used to compute

per-sample-gradients:

API | grad + vmap

When composed with vmap, grad can be used to compute

per-sample-gradients:

API | grad + vmap

When composed with vmap, grad can be used to compute

per-sample-gradients:

API | functional_call

Performs a functional call on the module by replacing the module

parameters and buffers with the provided ones.

API | functional_call

API | functional_call

API | functional_call

API | stack_module_state

API

Other examples include

● vjp (vector jacobian product)

● jvp (jacobian vector product)

● hessian

● …

Gotchas

Gotchas

1. Functions with side-effects / global effects can be problematic

2. vmap does not work with some inplace operations

3. vmap does not work with some data dependent conditionals

4. Batchnorm requires special handling

5. For more gotachs, checkout this

https://pytorch.org/docs/stable/func.batch_norm.html
https://pytorch.org/docs/stable/func.ux_limitations.html

Thank you!
https://shagunsodhani.com/talks/

@shagunsodhaniToronto Machine Learning
Summit 2024

https://shagunsodhani.com/talks/

