xplogger.experiment_manager.notebook package¶
Submodules¶
xplogger.experiment_manager.notebook.utils module¶
Utlities functions to make it easier to use xplogger with a jupyter notebook.
-
xplogger.experiment_manager.notebook.utils.
get_mean_and_std_err
(experiment_sequence: ExperimentSequence, metadata: DictConfig) → tuple[np.typing.NDArray[np.float32], np.typing.NDArray[np.float32], int][source]¶ Compute the mean and standard error for a given experiment sequence.
- Parameters
experiment_sequence (ExperimentSequence) –
metadata (DictConfig) – metadata to use for computing the metrics
- Returns
tuple of mean, standard error and number of experiments in the experiment sequence (useful for computing standard deviation etc).
- Return type
tuple[np.typing.NDArray[np.float32], np.typing.NDArray[np.float32], int]
-
xplogger.experiment_manager.notebook.utils.
make_df
(metadata: DictConfig, step_metadata: DictConfig, groups: dict[Any, RecordList], hyperparams: dict[str, set[ValueType]], exp_seq_dict: ExperimentSequenceDict) → pd.DataFrame[source]¶ Make a dataframe using the given experience sequence dict.
- Parameters
metadata (DictConfig) – Contains information like metric_name for the metrics of interest.
step_metadata (DictConfig) – Contains information like metric_name for the step metric (eg epoch or frames)
groups (dict[Any, RecordList]) –
hyperparams (dict[str, set[ValueType]]) –
exp_seq_dict (ExperimentSequenceDict) –
- Returns
- Return type
pd.DataFrame
-
xplogger.experiment_manager.notebook.utils.
prettyprint_dict
(d: dict, sep: str = '\t', indent: int = 0) → None[source]¶ Pretty print a dictionary.
- Parameters
d (dict) – input dictionary
sep (str, optional) – Seperator to use. Defaults to “t”.
indent (int, optional) – Indentation to use. Defaults to 0.